Answer: D) cube root of 16
================================================
Explanation:
The rule we use is
![x^{m/n} = \sqrt[n]{x^m}](https://tex.z-dn.net/?f=x%5E%7Bm%2Fn%7D%20%3D%20%5Csqrt%5Bn%5D%7Bx%5Em%7D)
In this case, x = 4, m = 2 and n = 3.
So,
![x^{m/n} = \sqrt[n]{x^m}\\\\\\4^{2/3} = \sqrt[3]{4^2}\\\\\\4^{2/3} = \sqrt[3]{16}\\\\\\](https://tex.z-dn.net/?f=x%5E%7Bm%2Fn%7D%20%3D%20%5Csqrt%5Bn%5D%7Bx%5Em%7D%5C%5C%5C%5C%5C%5C4%5E%7B2%2F3%7D%20%3D%20%5Csqrt%5B3%5D%7B4%5E2%7D%5C%5C%5C%5C%5C%5C4%5E%7B2%2F3%7D%20%3D%20%5Csqrt%5B3%5D%7B16%7D%5C%5C%5C%5C%5C%5C)
Showing that the original expression turns into the cube root of 16.
Categorical data may or may not have some logical order
while the values of a quantitative variable can be ordered and
measured.
Categorical data examples are: race, sex, age group, and
educational level
Quantitative data examples are: heights of players on a
football team; number of cars in each row of a parking lot
a) Colors of phone cover - quantitative
b) Weight of different phones - quantitative
c) Types of dogs - categorical
d) Temperatures in the U.S. cities - quantitative
I am pretty sure number 3 is the right answer
If I’m correct it should be 7 because range is least greatest subtracted from most greatest and the problem is asking from the green box so 67-60=7