The straight-edge would have to be 12.7279220614 inches
Answer:
x =-1
y =-1
Step-by-step explanation:
to solve this system of equation, using substiution method
3x-4y=1 ........................ equation 1
x=2y+1 ............................ equation 2
subbstitute for x into equation 1
3x-4y=1 ........................ equation 1
3(2y + 1) - 4y = 1
6y + 3 -4y = 1
2y + 3 = 1
collect the like terms
2y = 1- 3
2y= -2
divide both sides by the coefficient of y which is y
2y/2 = -2/2
y = -1
put the value of y =-1 into equation 2
x=2y+1 ............................ equation 2
x = 2(-1) + 1
x = -2 + 1
x = -1
therefore x =-1 y = -1
The claim does not work as irelle's thoerem for Indifference Measures does not hold for all mu √x
Answer:
B.
Step-by-step explanation:
The double cone is a cone on top of another cone. The bottom cone has the circular base on the bottom and the tip on top. The upper cone is upside down, and the two tips touch. Since the vertical plane goes through the tips of both cones, the cross section must have a shape that gets to a point at the middle of the height.
Answer: B. One triangle with the tip on top and an inverted triangle above it with the tips touching.
Answer:
See below
Step-by-step explanation:
![(a) \: \: x = \frac{c}{3} \\ \\ \implies \: {x}^{2} = { \bigg( \frac{c}{3} \bigg) }^{2} \\ \\ \bold{\implies \: {x}^{2} = \frac{ {c}^{2} }{9} } \\ \\ (b) \: \: x + y = \frac{c}{3} + \frac{ac}{4} \\ \\\implies \: \bold{x + y = \frac{4c + 3ac}{12} } \\ \\ \frac{xy}{z} = \frac{ \frac{c}{3} \times \frac{ac}{4} }{ \frac{ {a}^{2} }{2c + 1} } \\ \\ = \frac{ \frac{ac ^{2} }{12} }{ \frac{ {a}^{2} }{2c + 1} } \\ \\ = \frac{a {c}^{2} }{12} \times \frac{2c + 1}{ {a}^{2} } \\ \\ \implies\bold{\frac{xy}{z} = \frac{ {c}^{2}(2c + 1) }{12a} }](https://tex.z-dn.net/?f=%28a%29%20%5C%3A%20%20%5C%3A%20x%20%3D%20%20%5Cfrac%7Bc%7D%7B3%7D%20%20%5C%5C%20%20%5C%5C%20%20%5Cimplies%20%5C%3A%20%20%7Bx%7D%5E%7B2%7D%20%20%3D%20%20%20%7B%20%5Cbigg%28%20%5Cfrac%7Bc%7D%7B3%7D%20%5Cbigg%29%20%7D%5E%7B2%7D%20%20%20%5C%5C%20%20%5C%5C%20%5Cbold%7B%5Cimplies%20%5C%3A%20%20%7Bx%7D%5E%7B2%7D%20%20%3D%20%20%20%20%20%5Cfrac%7B%20%7Bc%7D%5E%7B2%7D%20%7D%7B9%7D%20%7D%20%5C%5C%20%20%5C%5C%20%28b%29%20%5C%3A%20%20%5C%3A%20x%20%2B%20y%20%3D%20%20%5Cfrac%7Bc%7D%7B3%7D%20%20%2B%20%20%5Cfrac%7Bac%7D%7B4%7D%20%20%5C%5C%20%20%5C%5C%5Cimplies%20%5C%3A%20%20%5Cbold%7Bx%20%2B%20y%20%20%3D%20%20%5Cfrac%7B4c%20%2B%203ac%7D%7B12%7D%20%7D%20%5C%5C%20%20%5C%5C%20%20%5Cfrac%7Bxy%7D%7Bz%7D%20%20%3D%20%20%5Cfrac%7B%20%5Cfrac%7Bc%7D%7B3%7D%20%20%5Ctimes%20%20%5Cfrac%7Bac%7D%7B4%7D%20%7D%7B%20%5Cfrac%7B%20%7Ba%7D%5E%7B2%7D%20%7D%7B2c%20%2B%201%7D%20%7D%20%20%5C%5C%20%20%5C%5C%20%3D%20%20%5Cfrac%7B%20%5Cfrac%7Bac%20%5E%7B2%7D%20%7D%7B12%7D%20%7D%7B%20%5Cfrac%7B%20%7Ba%7D%5E%7B2%7D%20%7D%7B2c%20%2B%201%7D%20%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%5Cfrac%7Ba%20%7Bc%7D%5E%7B2%7D%20%7D%7B12%7D%20%20%5Ctimes%20%20%5Cfrac%7B2c%20%2B%201%7D%7B%20%7Ba%7D%5E%7B2%7D%20%7D%20%20%5C%5C%20%20%5C%5C%20%20%5Cimplies%5Cbold%7B%5Cfrac%7Bxy%7D%7Bz%7D%20%20%3D%20%20%5Cfrac%7B%20%7Bc%7D%5E%7B2%7D%282c%20%2B%201%29%20%7D%7B12a%7D%20%7D)