Answer:
5<4
Step-by-step explanation:
This inequality is not correct though.
5-7+7<-3+7
5<4
Answer:
35
Step-by-step explanation:
7 orchids can be lined as 7!. This means that for the first orchid of the line, you can select 7 options. When you place the first orchid, for the second option you can select among 6 since 1 orchid has already been placed. Similarly, for the 3rd orchid of the line, you have left 5 options. The sequence goes in this fashion and for 7 orchids, you have 7*6*5*4*3*2*1 possibilities. However, there is a restriction here. 3 of the orchids are white and 4 are levender. This means that it does not make a difference if we line 3 white orchids in an arbitrary order since it will seem the same from the outside. As a result, the options for lining the 7 orchids diminish. The reduction should eliminate the number of different lining within the same colors. Similar to 7! explanation above, 3 white orchids can be lined as 3! and 4 levender orchids can be lined as 4!. To eliminate these options, we divide all options by the restrictions. The result is:
= 35. [(7*6*5*4*3*2*1/(4*3*2*1*3*2*1)]
Answer:
0.21 meters :)
Step-by-step explanation:
Answer:
32/225 ≈ 0.1422
Step-by-step explanation:
If you consider "3-digit" numbers to be between 100 and 999, inclusive, there are 128 such numbers divisible by 7. The probability of choosing one at random is ...
128/900 = 32/225 = 0.1422...(repeating)
__
If you consider all non-negative integers less than 1000 to be "3-digit numbers," then the probability is ...
142/1000 = 0.142 (exactly)
Answer:
Step-by-step explanation:
1.) y= 1/5x - 2
2.) y = 1x + 2
3.) y = 2x + 4
4.) y = 1x + 4
5.) y = 1/3x - 4
6.) y = 1/2x - 3