There are 2,500,000 pennies in $25,000
This problem can be readily solved if we are familiar with the point-slope form of straight lines:
y-y0=m(x-x0) ...................................(1)
where
m=slope of line
(x0,y0) is a point through which the line passes.
We know that the line passes through A(3,-6), B(1,2)
All options have a slope of -4, so that should not be a problem. In fact, if we check the slope=(yb-ya)/(xb-xa), we do find that the slope m=-4.
So we can check which line passes through which point:
a. y+6=-4(x-3)
Rearrange to the form of equation (1) above,
y-(-6)=-4(x-3) means that line passes through A(3,-6) => ok
b. y-1=-4(x-2) means line passes through (2,1), which is neither A nor B
****** this equation is not the line passing through A & B *****
c. y=-4x+6 subtract 2 from both sides (to make the y-coordinate 2)
y-2 = -4x+4, rearrange
y-2 = -4(x-1)
which means that it passes through B(1,2), so ok
d. y-2=-4(x-1)
this is the same as the previous equation, so it passes through B(1,2),
this equation is ok.
Answer: the equation y-1=-4(x-2) does NOT pass through both A and B.
20 bicycles. two tires per one bike. 2*10=20
Answer:1 b+1T+1 U=5617b+1 T =9062b+7T+5U = 1758
Step-by-step explanation:
Answer:
No there cannot be the same number of stickers on each page.
Step-by-step explanation:
If you want to find out how many stickers need to be in every page to be even you would add all the stickers up. 6+6+9+10+11= 42. Take the 42 and divide it by 5 to see how many stickers would go in each page. This will give you 8.4. However since this number is a decimal it can't be split evenly in whole stickers for each page. Meaning that it wouldn't be possible for each page to have a evenly distributed number of stickers per each page.