4 5/12 you just add the fractions
Answer:
Step-by-step explanation:
The first thing we have to do is find the measure of angle A using the fact that the csc A = 2.5.
Csc is the inverse of sin. So we could rewrite as
or more easy to work with is this:

and cross multiply to get
2.5 sinA = 1 and
which simplifies to
sin A = .4
Using the 2nd and sin keys on your calculator, you'll get that the measure of angle A is 23.58 degrees.
We can find angle B now using the Triangle Angle-Sum Theorem that says that all the angles of a triangle have to add up to equal 180. Therefore,
angle B = 180 - 23.58 - 90 so
angle B = 66.42
The area of a triangle is
where h is the height of the triangle, namely side AC; and b is the base of the triangle, namely side BC. To find first the height, use the fact that angle B, the angle across from the height, is 66.42, and the hypotenuse is 3.9. Right triangle trig applies:
and
3.9 sin(66.42) = h so
h = 3.57
Now for the base. Use the fact that angle A, the angle across from the base, measures 23.58 degrees and the hypotenuse is 3.9. Right triangle trig again:
and
3.9 sin(23.58) = b so
b = 1.56
Now we can find the area:
so
A = 2.8 cm squared
Answer:
Shakespeare creates an immediate mood of sadness around Romeo because he said sad hours go by slow. also, he talks to benvolio about how sad he is
These are a huge pain. First set up your initial triangle with A and B as your base angles and C as your vertex angle. Now drop an altitude and call it h. You need to solve for h. Use sin 56 = h/13 to get that h = 10.8. The rule is that if the side length of a is greater than the height but less than the side length of b, you have 2 triangles. h<a<b --> 10.8<12<13. Those are true statements so we have 2 triangles. Side a is the side that swings, this is the one we "move", forming the second triangle. First we have to solve the first triangle using the Law of Sines, then we can solve the second.

to get that angle B is 64 degrees. Now find C: 180-56-64=60. And now for side c:

and c=12.5. That's your first triangle. In the second triangle, side a is the swinging side and that length doesn't change. Neither does the angle measure. Angle B has a supplement of 180-64 which is 116. So the new angle B in the second triangle is 116, but the length of b doesn't change, either. I'll show you how you know you're right about that in just a sec. The only angle AND side that both change are C and c. If our new triangle has angles 56 and 116, then C has to be 8 degrees. Using the Law of Sines again, we can solve for c:

and c = 2.0. We can look at this new triangle and determine the side measures are correct because the longest side will always be across from the largest angle, and the shortest side will always be across from the smallest angle. The new angle B is 116, which is across from the longest side of 13. These are hard. Ugh.
44 peices are needed to surround the yard in fencing