1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MA_775_DIABLO [31]
4 years ago
12

Please help with GEOMETRY!! And explain!!

Mathematics
1 answer:
JulijaS [17]4 years ago
5 0

Answer:

The answer Is c. 13248 because i know

Step-by-step explanation:

I rather not

You might be interested in
Solve the proportion: 4/x = 2/7
N76 [4]

Answer:b

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
3-2i/5+i<br><img src="https://tex.z-dn.net/?f=3%20-%202i%20%5Cdiv%205%20%20%2B%20i%20%20" id="TexFormula1" title="3 - 2i \div 5
hammer [34]

3-2i/5+i

\frac{3*5+(-2)*1)+(-2*5-3*1)i}{5^2+1^2}

\frac{13-13i}{26}=\frac{1-i}{2}

=\frac{1}{2}-\frac{1}{2}i

Hope this helps!

Thank you for posting your question at here on Brainly.

-Charlie

3 0
3 years ago
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
Hmmmmmmmmmmmmmmmmmmmm
Marysya12 [62]
Yes the answer is hmmmmm
4 0
3 years ago
Read 2 more answers
A 20-foot ladder is leaning against a tree. The bottom of the ladder is 12 feet away from the bottom of the tree. Approximately
jarptica [38.1K]

Using the Pythagorean Theorem we can solve.


20^2 - 12^2 = X^2

400 - 144 = X^2

256 = X^2

X = √256

X = 16 feet.


The answer is D.

4 0
3 years ago
Read 2 more answers
Other questions:
  • Marlon and Brent are each measuring one of their shoes.their shoes measure 11 inches in all Marlons shoes is 1 inch longer than
    13·2 answers
  • Mr. Thomas is making rice. One cup of rice requires 1/3 of a cup of water. He is making 2 1/2 cups of rice. How much water will
    5·1 answer
  • The average number of acres burned by all wildfires in the United States is 780 acres with standard deviation 500 acres. Of cour
    7·1 answer
  • What are the x- and y-intercepts of the graph of 3x - 4y = 9?​
    14·1 answer
  • Please help I needed it badly
    14·1 answer
  • Please help me!
    10·1 answer
  • . The selling price of 15 articles is Rs 1,500 at a gain of 8%. Find C.P of each article<br>​
    7·1 answer
  • Select the correct answer.
    14·2 answers
  • 1!<br><br><br><br><br> please help!!<br><br><br> math geniuses where r uuuu<br><br><br><br> help!
    6·1 answer
  • <img src="https://tex.z-dn.net/?f=3y%20-%205x%20%3D%2010" id="TexFormula1" title="3y - 5x = 10" alt="3y - 5x = 10" align="absmid
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!