1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
worty [1.4K]
3 years ago
8

Aslam is planning to do social service for 3 hours a day. How much time does he spend on social service in 2 months?

Mathematics
1 answer:
ladessa [460]3 years ago
7 0

Answer:

if the month has 30 days: 180 hours

if the month has 31 days: 186 hours

You might be interested in
Can you solve this equation?​
Leya [2.2K]

Answer:

10 + 10 + 10 = 30 \\ 10 + 5 + 5 = 20 \\ 5 + 4 + 4 = 13 \\ 10 + 5 + 2 = 17

5 0
3 years ago
Read 2 more answers
Three interior angles of a polygon are,100degrees,120degrees,and 108degrees.Find the remaining two sides,if one of them is three
k0ka [10]

Answer:

Joe Mama :))))))))))))))))))))))

Step-by-step explanation:

8 0
3 years ago
What is (64-6squared)÷(5+2)you are welcome
lina2011 [118]
I believe the correct answer is 1.08
64-6= 58
58 squared= 7.6(or 7.61)
5+2= 7
7.6÷7= 1.08
4 0
4 years ago
A sphere has a diameter of 14.5 inches.
dlinn [17]

Answer:

≈ 660.5 in²

Step-by-step explanation:

The surface area (A) of a sphere is calculated using the formula

A = 4πr² ← r is the radius

Given diameter = 14. 5 then radius = 7.25, thus

A = 4π × 7.25² = 4π × 52.5625 ≈ 660.5 in²

4 0
3 years ago
How do I find the integral<br> ∫10(x−1)(x2+9)dxint10/((x-1)(x^2+9))dx ?
defon
\int\frac{10}{(x-1)(x^2+9)}\ dx=(*)\\\\\frac{10}{(x-1)(x^2+9)}=\frac{A}{x-1}+\frac{Bx+C}{x^2+9}=\frac{A(x^2+9)+(Bx+C)(x-1)}{(x-1)(x^2+9)}\\\\=\frac{Ax^2+9A+Bx^2-Bx+Cx-C}{(x-1)(x^2+9)}=\frac{(A+B)x^2+(-B+C)x+(9A-C)}{(x-1)(x^2+9)}\\\Updownarrow\\10=(A+B)x^2+(-B+C)x+(9A-C)\\\Updownarrow\\A+B=0\ and\ -B+C=0\ and\ 9A-C=10\\A=-B\ and\ C=B\to9(-B)-B=10\to-10B=10\to B=-1\\A=-(-1)=1\ and\ C=-1

(*)=\int\left(\frac{1}{x-1}+\frac{-x-1}{x^2+9}\right)\ dx=\int\left(\frac{1}{x-1}-\frac{x+1}{x^2+9}\right)\ dx\\\\=\int\frac{1}{x-1}\ dx-\int\frac{x+1}{x^2+9}\ dx=\int\frac{1}{x-1}-\int\frac{x}{x^2+9}\ dx-\int\frac{1}{x^2+9}\ dx=(**)\\\\\#1\ \int\frac{1}{x-1}\ dx\Rightarrow\left|\begin{array}{ccc}x-1=t\\dx=dt\end{array}\right|\Rightarrow\int\frac{1}{t}\ dt=lnt+C_1=ln(x-1)+C_1

\#2\ \int\frac{x}{x^2+9}\ dx\Rightarrow  \left|\begin{array}{ccc}x^2+9=u\\2x\ dx=du\\x\ dx=\frac{1}{2}\ du\end{array}\right|\Rightarrow\int\left(\frac{1}{2}\cdot\frac{1}{u}\right)\ du=\frac{1}{2}\int\frac{1}{u}\ du\\\\\\=\frac{1}{2}ln(u)+C_2=\frac{1}{2}ln(x^2+9)+C_2

\#3\ \int\frac{1}{x^2+9}\ dx=\int\frac{1}{x^2+3^2}\ dx=\frac{1}{3}tan^{-1}\left(\frac{x}{3}\right)+C_3\\\\therefore:\\\\\#1;\ \#2;\ \#3\Rightarrow(**)=ln(x-1)+C_1-\frac{1}{2}ln(x^2+9)+C_2-\frac{1}{3}tan^{-1}\left(\frac{x}{3}\right)+C_3

\boxed{=ln(x-1)-\frac{1}{2}ln(x^2+9)-\frac{1}{3}tan^{-1}\left(\frac{x}{3}\right)+C}



4 0
4 years ago
Other questions:
  • How do you get statistics from percentages
    5·1 answer
  • if a company has 5 employees with annual saleries of $40,000, $50,000, $40,000, $60,000 and $90,000 what is the mean anulal sala
    8·1 answer
  • Solve for w.<br> 6&gt;9+w.......
    12·1 answer
  • -3/7 +2z &lt;49 how to work this?
    5·2 answers
  • 8th grade math quiz i need help
    7·1 answer
  • Question 7 of 10
    12·1 answer
  • Please help I really do not understand this yeah I can be weird sometimes but please help will mark the correct answers brainies
    6·1 answer
  • the width of a rectangle is 2/3 length, The perimeter of the rectangle is 100 ft. What is the width, in feet, of the rectangle.
    6·1 answer
  • The graph of f(x) = 0.4x is replaced by the graph of g(x) = 0.4x + k. If g(x) is obtained by shifting f(x) up by 4 units, then w
    6·1 answer
  • Activist judges believe that federal judges should
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!