It's a function because each input has one output
Answer:
D. A number of books and their cost that is not possible with either subscription.
Step-by-step explanation:
If you look at the 2 lines on the graph, you see that the blue line represents the first subscription which charges a 96 dollar annual fee, and the red line represents the other subscription which charges 3 dollars per book.
Every point along these lines shows a price that could possibly be paid and a number of books that could be bought. The point where these two lines meet is where the amount of books borrowed and the price for those books is the same for both subscriptions.
Because point S is not at this intersection, nor is it on either of these lines, it is not possible to pay that price for that amount of books with either subscription.
From the last time i did it, i believe its B
Answer:
80 tickets
Step-by-step explanation:
Given the profit, y, modeled by the equation, y = x^2 – 40x – 3,200, where x is the number of tickets sold, we are to find the total number of tickets, x, that need to be sold for the drama club to break even. To do that we will simply substitute y = 0 into the given the equation and calculate the value of x;
y = x^2 – 40x – 3,200,
0 = x^2 – 40x – 3,200,
x^2 – 40x – 3,200 = 0
x^2 – 80x + 40x – 3,200 = 0
x(x-80)+40(x-80) = 0
(x+40)(x-80) = 0
x = -40 and x = 80
x cannot be negative
Hence the total number of tickets, x, that need to be sold for the drama club to break even is 80 tickets
Answer:
Demand: q = -50p + 1200
Supply: q = 40p
Step-by-step explanation:
First let's define our variables.
q = quantity of T-shirts
p = price
We know that when p = 12, q = 600. When p increases by 1, q decreases by 50. So this is a line with slope -50 that passes through the point (12, 600). Using point-slope form to write the equation:
q - 600 = -50 (p - 12)
Converting to slope-intercept form:
q - 600 = -50p + 600
q = -50p + 1200
Similarly, we know that when p = 9.75, q = 600 - 210 = 390. When p increases by 1, q increases by 40. So this is a line with slope 40 that passes through the point (9.75, 390). Using point-slope form to write the equation:
q - 390 = 40 (p - 9.75)
Converting to slope-intercept form:
q - 390 = 40p - 390
q = 40p