Answer: 8n
Let's simplify step-by-step.
(2(n+1)−1)2−(2n−1)2
Distribute:
=4n2+4n+1+−4n2+4n+−1
Combine Like Terms:
=4n2+4n+1+−4n2+4n+−1
=(4n2+−4n2)+(4n+4n)+(1+−1)
=8n
Add powers of 3.
1 + 3 = 4
4 + 9 = 13 = 4 + 3^2
13 + 27 = 40 = 13 + 3^3
40 + 81 = 121 = 40 + 3^4
Now you need to add 3^5 to 121.
121 + 3^5 = 121 + 243 = 364
Hey there!
(6^3 * 2^6) / 2^3
= (6 * 6 * 6 * 2 * 2 * 2 * 2 * 2 * 2) / 2 * 2 * 2
= (36 * 6 * 4 * 4 * 4) / 4 * 2
= (216 * 16 * 4) / 8
= 3,456 * 4 / 8
= 13,824 / 8
= 1,728
Looking for something that gives you the result of: 1,728
Option A.
12^3
= 12 * 12 * 12
= 144 * 12
= 1,728
Option A. is. possible answer
Option B.
6^3
= 6 * 6 * 6
= 36 * 6
= 216
216 ≠ 1,728
Option B. is incorrect
Option C.
12^6
= 12 * 12 * 12 * 12 * 12 * 12
= 144 * 144 * 144
= 20,736 * 144
= 2,985,984
2,985,984 ≠ 1,728
Option C. is also incorrect
Option D.
2^6 * 2^3
= 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2
= 4 * 4 * 4 * 4 * 2
= 16 * 16 * 2
= 256 * 2
= 512
512 ≠ 1,728
Option D. is also incorrect
Option E.
2^3 * 3^3
= 2 * 2 * 2 * 3 * 3 * 3
= 4 * 2 * 9 * 3
= 8 * 27
= 216
216 ≠ 1,728
Option E. is also incorrect.
Therefore, the answer should be:
Option A. 12^3
Good luck on your assignment & enjoy your day!
~Amphitrite1040:)
Since sin(2x)=2sinxcosx, we can plug that in to get sin(4x)=2sin(2x)cos(2x)=2*2sinxcosxcos(2x)=4sinxcosxcos(2x). Since cos(2x) = cos^2x-sin^2x, we plug that in. In addition, cos4x=cos^2(2x)-sin^2(2x). Next, since cos^2x=(1+cos(2x))/2 and sin^2x= (1-cos(2x))/2, we plug those in to end up with 4sinxcosxcos(2x)-((1+cos(2x))/2-(1-cos(2x))/2)
=4sinxcosxcos(2x)-(2cos(2x)/2)=4sinxcosxcos(2x)-cos(2x)
=cos(2x)*(4sinxcosx-1). Since sinxcosx=sin(2x), we plug that back in to end up with cos(2x)*(4sin(2x)-1)
Answer:
5 2/3 I think
Step-by-step explanation:
divide 68 by 12