Answer:
13/19
Step-by-step explanation:
To find the reciprocal, flip the number.
The reciprocal of 19/13 is 13/19
~
Answer:
Step-by-step explanation:
1) The center lies on the vertical line x = -5 and the the circle is tangent to (touches in one place only) the y-axis. Thus, the radius is 5.
2) Starting with (x - h)^2 + (y - k)^2 = r^2 and comparing this to the given
(x - 4)^2 + (y + 3)^2 = 6^2
we see that h = 4, k = -3 and r = 6. The center is at (4, -3) and the radius is 6.
3) Notice that A and B have the same x-coordinate, x = 15. The center of the circle is thus (15, -2), where that -2 is the halfway point between the two given points in the vertical direction. Arbitrarily choose A(15, 4) as one point on the circle. Then the equation of this circle is
(x - 4)^2 + (y + 3)^2 = r^2 = 6^2, where the 6 is one half of the vertical distance between A(15, 4) and B(15, -8) (which is 12).
Answer:
6. Line graph
Step-by-step explanation:
It shows how information changes over time
Answer:
will be 50% eazy ez hhhhh
Step-by-step explanation:
so, we have two 54x18 rectangles, so their perimeter is simply all those units added together, 54+54+54+54+18+18+18+18 = 288.
we know the circle's diameter is 1.5 times the width, well, the width is 18, so the diameter of the circle must be 1.5*18 = 27.
![\bf \stackrel{\textit{circumference of a circle}}{C=d\pi }~~ \begin{cases} d=diameter\\[-0.5em] \hrulefill\\ d=27 \end{cases}\implies C=27\pi \implies C=\stackrel{\pi =3.14}{84.78} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{perimeter of the rectangles}}{288}~~~~+~~~~\stackrel{\textit{perimeter of the circle}}{84.78}~~~~=~~~~372.78](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7Bcircumference%20of%20a%20circle%7D%7D%7BC%3Dd%5Cpi%20%7D~~%20%5Cbegin%7Bcases%7D%20d%3Ddiameter%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20d%3D27%20%5Cend%7Bcases%7D%5Cimplies%20C%3D27%5Cpi%20%5Cimplies%20C%3D%5Cstackrel%7B%5Cpi%20%3D3.14%7D%7B84.78%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bperimeter%20of%20the%20rectangles%7D%7D%7B288%7D~~~~%2B~~~~%5Cstackrel%7B%5Ctextit%7Bperimeter%20of%20the%20circle%7D%7D%7B84.78%7D~~~~%3D~~~~372.78)