They relate because they have the same bonds
Answer:
In addition to biology, evidence drawn from many different disciplines, including chemistry, geology, and mathematics, supports models of the origin of life on Earth. In order to determine when the first forms of life likely formed, the rate of radioactive decay can be used to determine the age of the oldest rocks (see optional problems C and D, below) exposed on Earth’s surface. These are found to be approximately 3.5 billion years old. The age of rocks can be correlated to fossils of the earliest forms of life. A. The graph compares times of divergence from the last common ancestor based on the fossil record with a "molecular time" constructed by comparing sequences of conserved proteins to determine a mutation rate (after Hedges and Kumar, Trends in Genetics, 2003). Explain how such a molecular clock could be refined to infer time or the evolution of prokaryotes. B. Using a molecular clock constructed from 32 conserved proteins, Hedges and colleagues (Battistuzzi et al., BMC Evol. Biol. 2004) estimated the times during which key biological processes evolved. A diagram based on their work is shown. Connect the time of the origin of life inferred from this diagram with the age of the oldest fossil stromatolites and the age of the oldest exposed rock to show how evidence from different scientific disciplines provides support for the concept of evolution. Evaluate the legitimacy of claims drawn from these different disciplines (biology, geology, and mathematics) regarding the origin of life on Earth. The oldest known rocks are exposed at three locations: Greenland, Australia, and Swaziland. The following application of mathematical methods provides essential evidence of the minimum age of Earth.
Explanation:
Explanation:
B) protein channel
Lipids are composed of fatty acids which form the hydrobic tail and glycerol which forms the hydrophilic head; glycerol is a 3-Carbon alcohol which is water soluble, while the fatty acid tail is a long chain hydrocarbon (hydrogens attached to a carbon backone) with up to 36 carbons.
Their polarity or arrangement can give these non-polar macromolecules hydrophilic and hydrophobic properties. Via <em>diffusion,</em> small water molecules can move across the phospholipid bilayer acts as a semi-permeable membrane into the extracellular fluid or the cytoplasm which are both hydrophilic and contain large concentrations of polar water molecules or other water-soluble compounds. The hydrophilic heads of the bilayer are attracted to water while their water-repellent hydrophobic tails face towards each other- allowing molecules of water to diffuse across the membrane along the concentration gradient.
Transmembrane proteins are embedded within the membrane from the extracellular fluid to the cytoplasm, and are sometimes attached to glycoproteins (proteins attached to carbohydrates) which function as cell surface markers. Carrier proteins and channel proteins are the two major classes of membrane transport proteins.
- Carrier proteins (also called carriers, permeases, or transporters) bind the specific solute to be transported and undergo a series of conformational changes to transfer the bound solute across the membrane. Transport proteins spanning the plasma membrane facilitate the movement of ions and other complex, polar molecules which are typically prevented from moving across the membrane.
- Channel proteins which are pores filled with water versus enabling charged molecules to diffuse across the membrane, from regions of high concentration to regions of lower concentration. This is a passive part of facilitated diffusion
Learn more about membrane components at brainly.com/question/1971706
Learn more about plasma membrane transport at brainly.com/question/11410881
#LearnWithBrainly
Answer:
Unlike matter, as energy flows through an ecosystem in one direction, from photosynthetic organisms to herbivores to omnivores and carnivores and decomposers, less and less energy becomes available to support life.
Explanation:
Primary producers use energy from the sun to produce their own food in the form of glucose, and then primary producers are eaten by primary consumers who are in turn eaten by secondary consumers, and so on, so that energy flows from one trophic level, or level of the food chain, to the next.
Energy is acquired by living things in three ways: photosynthesis, chemosynthesis, and the consumption and digestion of other living or previously-living organisms by heterotrophs.
Living organisms would not be able to assemble macromolecules (proteins, lipids, nucleic acids, and complex carbohydrates) from their monomeric subunits without a constant energy input.
Prokaryotes divide by binary fission, a form of asexual reproduction in which a cell divides into two cells with identical genetic information.
Explanation:
Binary fission and mitosis can be viewed as the same principle of asexual reproduction to give out two identical cells. However, the major difference between the two is that binary fission is to prokaryotes and mitosis is to eukaryotes. Remember that prokaryotes do not have a true nucleus (they have a nucleoid) hence binary fission does not involve the dividing of the nucleus. Mitosis does.
Sexual reproduction is responsible for creating variation in offspring especially due to the process of meiosis in gamete development and subsequent fertilization of two gametes from different parents.
Learn More:
For more on binary fission check out;
brainly.com/question/13807858
brainly.com/question/917537
#LearnWithBrainly