We are asked to describe into one term the definition "procedure for selecting sample elements from a total set of observations." The answer is sampling method. Sampling method is a method used by researchers to evaluate a large size of correspondents or samples such that the representive sample is still considered.
Answer:
um i don't know this (i do im just lazy as heck)
Step-by-step explanation:
Given the equation:

We will use the following rule to find the solution to the equation:
![x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7Bb%5E2-4ac%7D%7D%7B2a%7D)
From the given equation: a = 6, b = 7, c = 2
So,
![\begin{gathered} x=\frac{-7\pm\sqrt[]{7^2-4\cdot6\cdot2}}{2\cdot6}=\frac{-7\pm\sqrt[]{1}}{12}=\frac{-7\pm1}{12} \\ x=\frac{-7-1}{12}=-\frac{8}{12}=-\frac{2}{3} \\ or,x=\frac{-7+1}{12}=-\frac{6}{12}=-\frac{1}{2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x%3D%5Cfrac%7B-7%5Cpm%5Csqrt%5B%5D%7B7%5E2-4%5Ccdot6%5Ccdot2%7D%7D%7B2%5Ccdot6%7D%3D%5Cfrac%7B-7%5Cpm%5Csqrt%5B%5D%7B1%7D%7D%7B12%7D%3D%5Cfrac%7B-7%5Cpm1%7D%7B12%7D%20%5C%5C%20x%3D%5Cfrac%7B-7-1%7D%7B12%7D%3D-%5Cfrac%7B8%7D%7B12%7D%3D-%5Cfrac%7B2%7D%7B3%7D%20%5C%5C%20or%2Cx%3D%5Cfrac%7B-7%2B1%7D%7B12%7D%3D-%5Cfrac%7B6%7D%7B12%7D%3D-%5Cfrac%7B1%7D%7B2%7D%20%5Cend%7Bgathered%7D)
So, the answer will be option B) x = -1/2, -2/3
1. 60,30,90 right triangle. y will be hypotenuse/2, x will be
hypotenuse*sqrt(3)/2. So x = 16*sqrt(3)/2 = 8*sqrt(3), approximately 13.85640646
y = 16/2 = 8
2. 45,45,90 right triangle (2 legs are equal length and you have a right angle).
X and Y will be the same length and that will be hypotenuse * sqrt(2)/2. So
x = y = 8*sqrt(2) * sqrt(2)/2 = 8*2/2 = 8
3. Just a right triangle with both legs of known length. Use the Pythagorean theorem
x = sqrt(12^2 + 5^2) = sqrt(144 + 25) = sqrt(169) = 13
4. Another right triangle with 1 leg and the hypotenuse known. Pythagorean theorem again.
y = sqrt(1000^2 - 600^2) = sqrt(1000000 - 360000) = sqrt(640000) = 800 5. A 45,45,90 right triangle. One leg known. The other leg will have the same length as the known leg and the hypotenuse can be discovered with the Pythagorean theorem. x = 6. y = sqrt(6^2 + 6^2) = sqrt(36+36) = sqrt(72) = sqrt(2 * 36) = 6*sqrt(2), approximately 8.485281374
6. Another 45,45,90 triangle with the hypotenuse known. Both unknown legs will have the same length. And Pythagorean theorem will be helpful.
x = y.
12^2 = x^2 + y^2
12^2 = x^2 + x^2
12^2 = 2x^2
144 = 2x^2
72 = x^2
sqrt(72) = x
6*sqrt(2) = x
x is approximately 8.485281374
7. A 30,60,90 right triangle with the short leg known. The hypotenuse will be twice the length of the short leg and the remaining leg can be determined using the Pythagorean theorem.
y = 11*2 = 22.
x = sqrt(22^2 - 11^2) = sqrt(484 - 121) = sqrt(363) = sqrt(121 * 3) = 11*sqrt(3). Approximately 19.05255888
8. A 30,60,90 right triangle with long leg known. Can either have fact that in that triangle, the legs have the ratio of 1:sqrt(3):2, or you can use the Pythagorean theorem. In this case, I'll use the 1:2 ratio between the unknown leg and the hypotenuse along with the Pythagorean theorem.
x = 2y
y^2 = x^2 - (22.5*sqrt(3))^2
y^2 = (2y)^2 - (22.5*sqrt(3))^2
y^2 = 4y^2 - 1518.75
-3y^2 = - 1518.75
y^2 = 506.25 = 2025/4
y = sqrt(2025/4) = sqrt(2025)/sqrt(4) = 45/2
Therefore:
y = 22.5
x = 2*y = 2*22.5 = 45
9. Just a generic right triangle with 2 known legs. Use the Pythagorean theorem.
x = sqrt(16^2 + 30^2) = sqrt(256 + 900) = sqrt(1156) = 34
10. Another right triangle, another use of the Pythagorean theorem.
x = sqrt(50^2 - 14^2) = sqrt(2500 - 196) = sqrt(2304) = 48