Here is the compound interest formula solved for years:
<span>Years = {log(total) -log(Principal)} ÷ log(1 + rate)
</span>Years = {log(800) - log(600)} <span>÷ log(1.025)
</span><span>Years = {2.903089987 -2.7781512504} / 0.010723865392
</span>Years = {
<span>
<span>
<span>
0.1249387366
} / </span></span></span><span><span><span>0.010723865392
</span>
</span>
</span>
Years =
<span>
<span>
<span>
11.6505319708
</span>
</span>
</span>
That's how many years it takes for the $600 to become exactly $800.00
The question specifically asks how long for the money to be MORE than $800.00?
So, if we enter 800.01 into the equation, then the answer is
Years = {log(800.01) - log(600)} <span>÷ log(1.025)
</span><span>Years = {2.9030954156 -2.7781512504} / 0.010723865392
</span>Years =
<span>
<span>
<span>
0.1249441652
</span>
</span>
</span>
/ 0.010723865392
<span>
<span>
<span>
Years = 11.6510381875
</span>
</span>
</span>
<span><span> </span></span>
Lets get an example, for this example lets use 24/30 x 30/60
Without dividing out GCFs you would get 24x12 over 30 x 60 which is 288/1800
With dividing out GCFs you get 2/1 x 5/1 Which is 7 :)
Answer:
hehjzjxjxjdjjdhdhdhdhjdjdjhdhdhdhdjdjjdjsjs B is correct
Answer:
I would cost $4.75
Step-by-step explanation:
9.50 / 2
4.75
Hope it´s helpfull :)
Answer:
yes
Step-by-step explanation: