Temperature is the measurement system we use to measure the heat
<h2>
All waves must ____ have to travel through
</h2>
Explanation:
Wave
It is the periodic disturbance in a medium.
Types of Wave
There are two types of wave in general depending upon their propagation through a substance.
• Mechanical
• Electromagnetic
Mechanical Wave
It is the kind of wave which needs medium to travel. For example: Sound Wave
That means sound can be heard only whenever there is presence of certain substance like water, glass, air etc .It can’t be heard in vacuum no matter how loud is the sound.
Electromagnetic Wave
Is that which can travel through medium as well as through vacuum. For example: Light
But unlike sound, light can be seen through a substance or in vacuum. That is the reason it is referred as electromagnetic wave.
24. A, natural ph scale for it not to be acidic is 7-8
25. A, not sure about this one
26. A, looked it up
27. A, because it has to be shaken up to make the mixture appear and taste more combined.
28. D, i just guessed
29. D, that answer is stupid so it is the answer because it said not a property
30. A, looked it up
This question is incomplete; here is the complete question:
Marco is conducting an experiment. He knows the wave that he is working with has a wavelength of 32.4 cm. If he measures the frequency as 3 hertz, which statement about the wave is accurate?
A. The wave has traveled 32.4 cm in 3 seconds.
B. The wave has traveled 32.4 cm in 9 seconds.
C. The wave has traveled 97.2 cm in 3 seconds.
D. The wave has traveled 97.2 cm in 1 second.
The answer to this question is D. The wave has traveled 97.2 cm in 1 second.
Explanation:
The frequency of a wave, which is in this case 3 hertz, represents the number of waves that go through a point during 1 second. According to this, if the frequency of the wave is 3 hertz this means in 1 second there were 3 waves. Moreover, if you multiply the wavelength (32.4cm) by the frequency (3) you will know the distance the wave traveled in 1 second: 32.4 x 3 = 97.2 cm. This makes option D the correct one as the distance in 1 second was 97.2 cm.