Answer:
20.0 cm
Explanation:
Here is the complete question
The normal power for distant vision is 50.0 D. A young woman with normal distant vision has a 10.0% ability to accommodate (that is, increase) the power of her eyes. What is the closest object she can see clearly?
Solution
Now, the power of a lens, P = 1/f = 1/u + 1/v where f = focal length of lens, u = object distance from eye lens and v = image distance from eye lens.
Given that we require a 10 % increase in the power of the lens to accommodate the image she sees clearly, the new power P' = 50.0 D + 10/100 × 50 = 50.0 D + 5 D = 55.0 D.
Also, since the object is seen clearly, the distance from the eye lens to the retina equals the distance between the image and the eye lens. So, v = 2.00 cm = 0.02 m
Now, P' = 1/u + 1/v
1/u = P'- 1/v
1/u = 55.0 D - 1/0.02 m
1/u = 55.0 m⁻¹ - 1/0.02 m
1/u = 55.0 m⁻¹ - 50.0 m⁻¹
1/u = 5.0 m⁻¹
u = 1/5.0 m⁻¹
u = 0.2 m
u = 20 cm
So, at 55.0 dioptres, the closet object she can see is 20 cm from her eye.
Answer:
T= 38.38 N
Explanation:
Here
mass of can = m = 3 kg
g= 9.8 m/sec2
angle θ = 40°
From figure we see the vertical and horizontal component of tension force T
If the can is to slip - then horizontal component of tension force should become equal to force of friction.
First we find force of friction
Fs= μ R
where
μ = 0.76
R = weight of can = mg = 3 × 9.8 = 29.4 N
Now horizontal component of tension
Tx= T cos 40 = T× 0.7660 N
==>T× 0.7660 = 29.4
==> T= 38.38 N
Answer:
Explanation:
Comment
You could calculate it out by assuming the same starting temperature for each substance. (You have to assume that the substances do start at the same temperature anyway).
That's like shooting 12 with 2 dice. It can be done, but aiming for a more common number is a better idea.
Same with this question.
You should just develop a rule. The rule will look like this
The greater the heat capacity the (higher or lower) the change in temperature.
The greater the heat capacity the lower the change in temperature
That's not your question. You want to know which substance will have the greatest temperature change given their heat capacities.
Answer
lead. It has the smallest heat capacity and therefore it's temperature change will be the greatest.
Answer:
50280 meters
Explanation:
33.52 meters/seconds is 2011.2 meters/minutes (multiply by 60)
2011.2 meters/m * 25 minutes = answer