We have :
s - 39⁰+ s - 9⁰ = s + 29⁰
s + s - s = 29⁰ + 9⁰ + 39⁰
s = 77⁰
Answer: 77⁰
Ok done. Thank to me :>
The land area of Florida is 170 000 square kilometres, this is because 1 700 000 divided by 10 is 170 000.
This is what the graph of in(x) looks like
Answer:
49 tickets
Step-by-step explanation:
THis is pretty straight forward
So we have the ratio 4:7
We know there were 88 tickets in total but we don’t know the exact amount of adult and kids
So we can Add up the ratio
4+7=11
Now we can divide 88 by 11
you’ll get 7
So by doing this we know there are 7 groups of the ratio for child to adults 4:7
So we just multiply the 7 to each
4*7
7*7
you’ll get 28:49
Now we know there are 28 kid tickets and 49 adult tickets
We know this is correct becuase if you add up the ratio, it’ll be 88
Which is the same as the amount fo people at the hockey game
Answer:

Step-by-step explanation:
In essence, one needs to work their way backwards to solve this problem. Use the information to construct the function.
The function has verticle asymptotes at (x = 4) and (x = 5). This means that the denominator must have (x - 4) and (x - 5) in it. This is because a verticle asymptote indicates that the function cannot have a value at these points, the function jumps at these points. This is because the denominator of a fraction cannot be (0), the values (x - 4) and (x - 5) ensure this. Since if (x) equals (4) or (5) in this situation, the denominator would be (0) because of the zero product property (this states that any number times zero equals zero). So far we have assembled the function as the following:

The function has x-intercepts at (6, 0), and (0, 10). This means that the numerator must equal (0) when (x) is (6) or (10). Using similar logic that was applied to find the denominator, one can conclude that the numerator must be (
). Now one has this much of the function assembled

Finally one has to include the y-intercept of (0, 120). Currently, the y-intercept is (60). This is found by multiplying the constants together. (6 * 10) equals (60). One has to multiply this by (2) to get (120). Therefore, one must multiply the numerator by (2) in order to make the y-intercept (120). Thus the final function is the following:
