Answers:
33. Angle R is 68 degrees
35. The fraction 21/2 or the decimal 10.5
36. Triangle ACG
37. Segment AB
38. The values are x = 6; y = 2
40. The value of x is x = 29
41. C) 108 degrees
42. The value of x is x = 70
43. The segment WY is 24 units long
------------------------------------------------------
Work Shown:
Problem 33)
RS = ST, means that the vertex angle is at angle S
Angle S = 44
Angle R = x, angle T = x are the base angles
R+S+T = 180
x+44+x = 180
2x+44 = 180
2x+44-44 = 180-44
2x = 136
2x/2 = 136/2
x = 68
So angle R is 68 degrees
-----------------
Problem 35)
Angle A = angle H
Angle B = angle I
Angle C = angle J
A = 97
B = 4x+4
C = J = 37
A+B+C = 180
97+4x+4+37 = 180
4x+138 = 180
4x+138-138 = 180-138
4x = 42
4x/4 = 42/4
x = 21/2
x = 10.5
-----------------
Problem 36)
GD is the median of triangle ACG. It stretches from the vertex G to point D. Point D is the midpoint of segment AC
-----------------
Problem 37)
Segment AB is an altitude of triangle ACG. It is perpendicular to line CG (extend out segment CG) and it goes through vertex A.
-----------------
Problem 38)
triangle LMN = triangle PQR
LM = PQ
MN = QR
LN = PR
Since LM = PQ, we can say 2x+3 = 5x-15. Let's solve for x
2x+3 = 5x-15
2x-5x = -15-3
-3x = -18
x = -18/(-3)
x = 6
Similarly, MN = QR, so 9 = 3y+3
Solve for y
9 = 3y+3
3y+3 = 9
3y+3-3 = 9-3
3y = 6
3y/3 = 6/3
y = 2
-----------------
Problem 40)
The remote interior angles (2x and 21) add up to the exterior angle (3x-8)
2x+21 = 3x-8
2x-3x = -8-21
-x = -29
x = 29
-----------------
Problem 41)
For any quadrilateral, the four angles always add to 360 degrees
J+K+L+M = 360
3x+45+2x+45 = 360
5x+90 = 360
5x+90-90 = 360-90
5x = 270
5x/5 = 270/5
x = 54
Use this to find L
L = 2x
L = 2*54
L = 108
-----------------
Problem 42)
The adjacent or consecutive angles are supplementary. They add to 180 degrees
K+N = 180
2x+40 = 180
2x+40-40 = 180-40
2x = 140
2x/2 = 140/2
x = 70
-----------------
Problem 43)
All sides of the rhombus are congruent, so WX = WZ.
Triangle WPZ is a right triangle (right angle at point P).
Use the pythagorean theorem to find PW
a^2+b^2 = c^2
(PW)^2+(PZ)^2 = (WZ)^2
(PW)^2+256 = 400
(PW)^2+256-256 = 400-256
(PW)^2 = 144
PW = sqrt(144)
PW = 12
WY = 2*PW
WY = 2*12
WY = 24
Answer:
a)= 2
b) 6.324
c) P= 0.1217
Step-by-step explanation:
a) The mean of the sampling distribution of X`1- X`2 denoted by ux`-x` = u1-u2 is equal to the difference between population means i.e = 2 ( given in the question)
b) The standard deviation of the sampling distribution of X`1- X`2 ( standard error of X`1- X`2) denoted by σ_X`1- X`2 is given by
σ_X`1- X`2 = √σ²/n1 +σ²/n2
Var ( X`1- X`2) = Var X`1 + Var X`2 = σ²/n1 +σ²/n2
so
σ_X`1- X`2 =√20 +20 = 6.324
if the populations are normal the sampling distribution X`1- X`2 , regardless of sample sizes , will be normal with mean u1-u2 and variance σ²/n1 +σ²/n2.
Where as Z is normally distributed with mean zero and unit variance.
If we take X`1- X`2= 0 and u1-u2= 2 and standard deviation of the sampling distribution = 6.324 then
Z= 0-2/ 6.342= -0.31625
P(-0.31625<z<0)= 0.1217
The probability would be 0.1217
Answer:
The answer would be C.
Step-by-step explanation:
Answer:
C. (4,28)
Step-by-step explanation:
The substitution method requires you to input a specified number in place of a variable. In this case, the variable 'x' should be replaced by the number 4. Using the order of operations, we know that multiplication should be applied before subtraction. When we replace 'x' with 4, we get the equation 'y=8(4)-4'. Multiplying 8 and 4 gives us 32. If we subtract 4 from 32, we get 28. The answer ends up being 'y=28'.
That is the first part of our solution. What we are actually looking for is an ordered pair. We know ordered pairs are written in the form (x, y). First, we need to find the 'x'. The 'x' has been given to us from the beginning, it is 4. Next is the 'y'. This is what we needed to find using substitution. We ultimately concluded that the 'y' is equivalent to 28. Therefore our ordered pair is (4, 28), the letter choice C.
I hope this helped you and that I clearly elaborated on the answer choice.