1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vekshin1
3 years ago
5

Can solve 100 math problems every 4/3 hours. How many math problems does she solve per hour?

Mathematics
1 answer:
MrMuchimi3 years ago
4 0

She can solve 75 questions per hour.

<u>Solution:</u>

Given that, a lady can solve 100 math problems every 4/3 hours.  

We have to find how many math problems does she can solve per hour?

Now, according to the given information.

In \frac{4}{3} hours ⇒ 100 problems

Then, 1 hour ⇒ "n" problems

So, by chris cross method.

\frac{4}{3} \times n = 1 \times 100

\frac{4}{3}n = 100

n = \frac{3}{4} \times 100\\\\n = 3 \times 25 = 75

Hence, she can solve 75 questions per hour.

You might be interested in
If a=mg-kv2/m,find,correct to the nearest whole number the value of v when a=2.8,m=12,g=9.8 and k=8/3
RUDIKE [14]

Answer:

The value of v is ± 22.729.

Step-by-step explanation:

Let be a=m\cdot g -\frac{k\cdot v^{2}}{m}, the variable v is now cleared:

\frac{k\cdot v^{2}}{m}=m\cdot g -a

k\cdot v^{2} = m^{2}\cdot g- m\cdot a

v^{2} = \frac{m^{2}\cdot g - m\cdot a}{k}

v =\pm \sqrt{\frac{m^{2}\cdot g-m\cdot a}{k} }

If a = 2.8, m=12, g = 9.8 and k = \frac{8}{3}, the value of v is:

v=\pm \sqrt{\frac{(12)^{2}\cdot (9.8)-(12)\cdot (2.8)}{\frac{8}{3} } }

v \approx \pm 22.729

The value of v is ± 22.729.

6 0
3 years ago
I need help this is dude tomorrow
olganol [36]

Answer:

Negative

Step-by-step explanation:

6 0
2 years ago
Read 2 more answers
Rewrite 9cos 4x in terms of cos x.
rosijanka [135]
\bf \qquad \textit{Quad identities}\\\\&#10;sin(4\theta )=&#10;\begin{cases}&#10;8sin(\theta )cos^3(\theta )-4sin(\theta )cos(\theta )\\&#10;4sin(\theta )cos(\theta )-8sin^3(\theta )cos(\theta )&#10;\end{cases}&#10;\\\\\\&#10;cos(4\theta)=8cos^4(\theta )-8cos^2(\theta )+1\\\\&#10;-------------------------------\\\\&#10;9cos(4x)\implies 9[8cos^4(x)-8cos^2(x)+1]&#10;\\\\\\&#10;72cos^4(x)-72cos^2(x)+9


---------------------------------------------------------------------------

as far as the previous one on the 2tan(3x)

\bf tan(2\theta)=\cfrac{2tan(\theta)}{1-tan^2(\theta)}\qquad tan({{ \alpha}} + {{ \beta}}) = \cfrac{tan({{ \alpha}})+ tan({{ \beta}})}{1- tan({{ \alpha}})tan({{ \beta}})}\\\\&#10;-------------------------------\\\\

\bf 2tan(3x)\implies 2tan(2x+x)\implies 2\left[  \cfrac{tan(2x)+tan(x)}{1-tan(2x)tan(x)}\right]&#10;\\\\\\&#10;2\left[  \cfrac{\frac{2tan(x)}{1-tan^2(x)}+tan(x)}{1-\frac{2tan(x)}{1-tan^2(x)}tan(x)}\right]\implies 2\left[ \cfrac{\frac{2tan(x)+tan(x)-tan^3(x)}{1-tan^2(x)}}{\frac{1-tan(x)-2tan^3(x)}{1-tan^2(x)}} \right]&#10;\\\\\\

\bf 2\left[ \cfrac{2tan(x)+tan(x)-tan^3(x)}{1-tan^2(x)}\cdot \cfrac{1-tan^2(x)}{1-tan(x)-2tan^3(x)} \right]&#10;\\\\\\&#10;2\left[ \cfrac{3tan(x)-tan^3(x)}{1-tan^2(x)-2tan^3(x)} \right]\implies \cfrac{6tan(x)-2tan^3(x)}{1-tan^2(x)-2tan^3(x)}
4 0
3 years ago
5.
ICE Princess25 [194]

Answer:

5 x 8 /a*7

Step-by-step explanation:

8 0
2 years ago
Aflati un numar natural care impartit la 17 da catul 23 si restul 11.
Anit [1.1K]
I cannot understand what you are saying 
5 0
3 years ago
Other questions:
  • Goran deposits $4000 into an account that pays simple interest rate at %3 per year. How much interest will he be paid in the fir
    6·1 answer
  • A system of equations has no solution. If y = 8x + 7 is one of the equations, which could be the other equation?
    15·2 answers
  • fiona has a box of chocolates the box contains 60 chocolates she eats 1/5 of the chocolates she gives 32 chocolates away what is
    10·1 answer
  • Divide. Express your answer in lowest terms. - 7/10 divide by (- 4/5)
    6·2 answers
  • HELPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
    15·1 answer
  • What is the equivalent decimal?
    12·2 answers
  • 214 g = ? kg please help
    12·2 answers
  • The sum of two numbers is 60 and the difference is 6. What are the numbers?
    10·1 answer
  • Help will report fake answers
    15·1 answer
  • 6.
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!