1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iren2701 [21]
4 years ago
9

Factor 12x^3-9x^2-4x-3

Mathematics
1 answer:
asambeis [7]4 years ago
4 0

Answer:( 4 x + 3 ) ( 3 x 2 − 1 )

Step-by-step explanation:

You might be interested in
6. There are 90 seats in the school auditorium. The school had a sold out show of their play last weekend, and made $315. The co
Olegator [25]

Answer:

90

Step-by-step explanation:

4 0
3 years ago
Z= -12i + 11 what are the real imaginary parts of z
Sergio039 [100]
Let's solve for i.

z=−12i+11

Step 1: Flip the equation.

−12i+11=z

Step 2: Add -11 to both sides.

−12i+11+−11=z+−11

−12i=z−11

Step 3: Divide both sides by -12.

−12i−12=z−11−12

i=−112z+1112

Answer:

i=−112z+1112

5 0
4 years ago
Ratios, Rates, and Circles Solve each problem. Show your work. Sierra has a pet Burmese python. It has grown too large for its e
saw5 [17]

Answer:

144in

Step-by-step explanation:

METHOD 1:

18 - 36

x - 48

36x = 18 * 48

36x = 864

x = 24

ALTERNATIVE METHOD:

18:36 (breadth:length)

1:2

When the length is 48in, the breadth is half the length, hence, the breadth is 24in.

Final Solution:

So, when the base is 48in, the width is 24in.

Since we have the two values

P = 2(l+b)

= 2(48+24)

= 2 * 72

= 144in

<em>Feel free to mark this as brainliest! :D</em>

8 0
3 years ago
Integrating sums of functions
Andrei [34K]

Answer:

(a) -12

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

<u>Calculus</u>

Integrals

Integration Rule [Reverse Power Rule]:                                                                    \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Swapping Limits]:                                                                \displaystyle \int\limits^b_a {f(x)} \, dx = -\int\limits^a_b {f(x)} \, dx

Integration Property [Multiplied Constant]:                                                           \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                         \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Property [Splitting Integral]:                                                                \displaystyle \int\limits^c_a {f(x)} \, dx = \int\limits^b_a {f(x)} \, dx + \int\limits^c_b {f(x)} \, dx

Integration Rule [Fundamental Theorem of Calculus 1]:                                      \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)  

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle \int\limits^6_4 {f(x)} \, dx = 5<u />

<u />\displaystyle \int\limits^4_{10} {f(x)} \, dx = 8<u />

<u />\displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx<u />

<u />

<u>Step 2: Solve Pt. 1</u>

  1. [Integral] Rewrite [Integration Property - Addition]:                                     \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = \int\limits^{10}_6 {4f(x)} \, dx + \int\limits^{10}_6 {10} \, dx
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:                   \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4\int\limits^{10}_6 {f(x)} \, dx + 10\int\limits^{10}_6 {} \, dx

<u>Step 3: Redefine</u>

<em>Manipulate the given integral values.</em>

  1. [Integrals] Combine [Integration Property - Splitting Integral]:                     \displaystyle \int\limits^6_4 {f(x)} \, dx + \int\limits^4_{10} {f(x)} \, dx = \int\limits^6_{10} {f(x)} \, dx
  2. [Integral] Rewrite:                                                                                           \displaystyle \int\limits^6_{10} {f(x)} \, dx = \int\limits^6_4 {f(x)} \, dx + \int\limits^4_{10} {f(x)} \, dx
  3. [Integral] Substitute in integrals:                                                                    \displaystyle \int\limits^6_{10} {f(x)} \, dx = 5 + 8
  4. [Integral] Add:                                                                                                 \displaystyle \int\limits^6_{10} {f(x)} \, dx = 13
  5. [Integral] Rewrite [Integration Property - Swapping Limits]:                        \displaystyle -\int\limits^{10}_6 {f(x)} \, dx = 13
  6. [Integral] [Division Property of Equality] Isolate integral:                             \displaystyle \int\limits^{10}_6 {f(x)} \, dx = -13

<u>Step 4: Solve Pt. 2</u>

  1. [Integral] Substitute in integral:                                                                     \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4(-13) + 10\int\limits^{10}_6 {} \, dx
  2. [Integral] Integrate [Integration Rule - Reverse Power Rule]:                      \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4(-13) + 10(x) \bigg| \limits^{10}_6
  3. [Integral] Evaluate [Integration Rule - FTC 1]:                                               \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4(-13) + 10(10 - 6)
  4. [Integral] (Parenthesis) Subtract:                                                                   \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4(-13) + 10(4)
  5. [Integral] Multiply:                                                                                           \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = -52 + 40
  6. [Integral] Add:                                                                                                 \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = -12

Topic: AP Calculus AB/BC

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
Simplify (7ab)squared 0 <br>A) 7<br> B) 1 <br>C) 7ab <br>D)0​
PolarNik [594]

Answer:

The answer to this is B.

Step-by-step explanation:

Anytime a number/variable is squared by a 0, it always equals a 1.

Hope this Helped!!!

~Shane

4 0
4 years ago
Read 2 more answers
Other questions:
  • Suppose a cylinder has a diameter of 18 feet and a height of h feet. Which equation can be used to find V, the volume of the cyl
    13·2 answers
  • On average, Stan drinks 3/4 of a 8 ounce glass of water in 1/2 of an hour.
    11·1 answer
  • The table lists the number of laps Maria swam daily for 6 days. What is the median of the number of laps she swam?
    10·2 answers
  • supposee you start saving today for a $8000 down payment that you plan to make on a condo in 4 years. Assume that you make no de
    15·1 answer
  • Help please......!! :(
    8·2 answers
  • What is the lateral area of the cone to the nearest whole number. The figure is not drawn to scale 40M 60M
    13·1 answer
  • If f(x)=-3x-2, find each value.<br> 1. f(3)
    11·1 answer
  • What is the length of leg s of the triangle below?<br> 45<br> 4-12<br> 90°<br> 45
    7·1 answer
  • Tell whether the given value is a solution of the equation: 4+x = 10; n = 6
    13·1 answer
  • Need help finding answer
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!