Given:
The function is
![f(x)=\dfrac{8\sqrt[3]{x}-8}{9}](https://tex.z-dn.net/?f=f%28x%29%3D%5Cdfrac%7B8%5Csqrt%5B3%5D%7Bx%7D-8%7D%7B9%7D)
To find:
The inverse function
.
Solution:
We have,
![f(x)=\dfrac{8\sqrt[3]{x}-8}{9}](https://tex.z-dn.net/?f=f%28x%29%3D%5Cdfrac%7B8%5Csqrt%5B3%5D%7Bx%7D-8%7D%7B9%7D)
Step 1: Putting f(x)=y, we get
![y=\dfrac{8\sqrt[3]{x}-8}{9}](https://tex.z-dn.net/?f=y%3D%5Cdfrac%7B8%5Csqrt%5B3%5D%7Bx%7D-8%7D%7B9%7D)
Step 2: Interchange x and y.
![x=\dfrac{8\sqrt[3]{y}-8}{9}](https://tex.z-dn.net/?f=x%3D%5Cdfrac%7B8%5Csqrt%5B3%5D%7By%7D-8%7D%7B9%7D)
Step 3: Isolate variable y.
![9x=8\sqrt[3]{y}-8](https://tex.z-dn.net/?f=9x%3D8%5Csqrt%5B3%5D%7By%7D-8)
![9x+8=8\sqrt[3]{y}](https://tex.z-dn.net/?f=9x%2B8%3D8%5Csqrt%5B3%5D%7By%7D)
![\dfrac{9x+8}{8}=\sqrt[3]{y}](https://tex.z-dn.net/?f=%5Cdfrac%7B9x%2B8%7D%7B8%7D%3D%5Csqrt%5B3%5D%7By%7D)
Taking cube on both sides, we get


Step 4: Putting
, we get

Therefore, the correct option is C.
Answer: 50a+2
Step-by-step explanation:
1. Simplify 5a5a\5a5a to 1.
1+5×10a+10
2.Simplify 5×10a to 50a.
1+50a+10
3.Cancel 10.
1+50a+1
4. Collect like terms.
50a+(1+1)
5. Simplify.
50a+2