Answer:
y = x + 3
Step-by-step explanation:
This is because the number is increasing by three each time and if you substituted the variable x with a number the answer is true.
Answer:
Five more than the square of a number= 5 + x²
Five more than twice a number = 5 + 2x
Five less than the product of 3 and a number = 3x - 5
Five less the product of 3 and a number = 5 -3x
Twice the sum of a number and 5 = 2(x + 5)
The sum of twice a number and 5 = 2x + 5
The product of a cube of a number and 5= 5x³
The cube of the product of 5 and a number= (5x)³
The circumference = π x the diameter of the circle (Pi multiplied by the diameter of the circle). Simply divide the circumference by π and you will have the length of the diameter. The diameter is just the radius times two, so divide the diameter by two and you will have the radius of the circle
Answer:
3π square units.
Step-by-step explanation:
We can use the disk method.
Since we are revolving around AB, we have a vertical axis of revolution.
So, our representative rectangle will be horizontal.
R₁ is bounded by y = 9x.
So, x = y/9.
Our radius since our axis is AB will be 1 - x or 1 - y/9.
And we are integrating from y = 0 to y = 9.
By the disk method (for a vertical axis of revolution):
![\displaystyle V=\pi \int_a^b [R(y)]^2\, dy](https://tex.z-dn.net/?f=%5Cdisplaystyle%20V%3D%5Cpi%20%5Cint_a%5Eb%20%5BR%28y%29%5D%5E2%5C%2C%20dy)
So:

Simplify:

Integrate:
![\displaystyle V=\pi\Big[y-\frac{1}{9}y^2+\frac{1}{243}y^3\Big|_0^9\Big]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20V%3D%5Cpi%5CBig%5By-%5Cfrac%7B1%7D%7B9%7Dy%5E2%2B%5Cfrac%7B1%7D%7B243%7Dy%5E3%5CBig%7C_0%5E9%5CBig%5D)
Evaluate (I ignored the 0):
![\displaystyle V=\pi[9-\frac{1}{9}(9)^2+\frac{1}{243}(9^3)]=3\pi](https://tex.z-dn.net/?f=%5Cdisplaystyle%20V%3D%5Cpi%5B9-%5Cfrac%7B1%7D%7B9%7D%289%29%5E2%2B%5Cfrac%7B1%7D%7B243%7D%289%5E3%29%5D%3D3%5Cpi)
The volume of the solid is 3π square units.
Note:
You can do this without calculus. Notice that R₁ revolved around AB is simply a right cone with radius 1 and height 9. Then by the volume for a cone formula:

We acquire the exact same answer.