First, find the nth term
To do this, find the term to term difference...
A
-7 and 3 = 10
3 and 13 = 10
13 and 23 = 10
As the difference is 10, we now write out the 10 times table
10, 20, 30, 40
The next step is to work out how to get from the sequence to the 10x table
B
-7 - 10 = -17
3 - 20 = -17
13 - 30 = -17
23 - 40 = -17
Now use the answer from each section in the general formula
x = An + B
This could also be written as ?n + ?
Using our numbers, this becomes 10n - 17
Now use the formula to work out the 110th term
(10 x 110) - 17
1100 - 17 = 1083
Answer:
B- $38.00
Step-by-step explanation:
Since there are two adults, you would multiply the cost of adults by number of adults. in this case that would be $10.75 x 2= $21.50. do the same for the kids and you will get $5.50 x 3 = $16.50. add 16.50 and 21.50 and you will get $38.00 which is your answer
hope this helped :D
Answer:
C
Step-by-step explanation:
Growth can be represented by the equation
. We know that r=2% or 0.02 in this situation so we have 1.02. We know t=100 hours and the starting population A=200. We substitute these values and use a calculator to evaluate.
We now use our calculator to evaluate the exponent first and then multiply by 200.

<u>vertex</u>
y = 3(x - 2)² - 4
y = 3((x - 2)(x - 2)) - 4
y = 3(x² - 2x - 2x + 4) - 4
y = 3(x² - 4x + 4) - 4
y = 3(x²) - 3(4x) + 3(4) - 4
y = 3x² - 12x + 12 - 4
y = 3x² - 12x + 8
3x² - 12x + 8 = 0
x = <u>-(-12) +/- √((-12)² - 4(3)(8))</u>
2(3)
x = <u>12 +/- √(144 - 96)</u>
6
x = <u>12 +/- √(48)
</u> <u> </u> 6<u>
</u>x =<u> 12 +/- 6.93</u>
<u /> 6
x = 2 +/- 1.155
x = 2 + 1.155 x = 2 - 1.155
x = 3.155 x = 0.845
y = 3x² - 12x + 8
y = 3(3.155)² - 12(3.155) + 8
y = 3(1.334025) - 3.786 + 8
y = 4.002075 - 3.786 + 8
y = 0.216075 + 8
y = 8.216075
(x, y) = (3.155, 8.216075)
or
y = 3x² - 12x + 8
y = 3(0.845)² - 12(0.845) + 8
y = 3(0.714025) - 10.14 + 8
y = 2.142075 - 10.14 + 8
y = -7.857925 + 8
y = 0.142675
(x, y) = (0.845, 0.142675)
<u>y-intercept</u>
y = 3x² - 12x + 8
y = 3(0)² - 12(0) + 8
y = 3(0) - 0 + 8
y = 0 - 0 + 8
y = 0 + 8
0 = -y + 8
y = 8
(x, y) = (0, 8)
-------------------------------------------------------------------------------------------
<u>vertex</u>
y = 4(x - 5)² = 1
y = 4(x - 5)² - 1
y = 4((x - 5)(x - 5)) - 1
y = 4(x² - 5x - 5x + 25) - 1
y = 4(x² - 10x + 25) - 1
y = 4(x²) - 4(10x) + 4(25) - 1
y = 4x² - 40x + 100 - 1
y = 4x² - 40x + 99
4x² - 40x + 99 = 0
x = <u>-(-40) +/- √((-40)² - 4(4)(99))</u>
2(4)
x = <u>40 +/- √(1600 - 1584)</u>
8
x = <u>40 +/- √(16)</u>
8
x = <u>40 +/- 4</u>
8
x = 5 +/- 1/2
x = 5 + 1/2 x = 5 - 1/2
x = 5 1/2 x = 4 1/2
y = 4x² - 40x + 99
y = 4(5 1/2)² - 40(5 1/2) + 99
y = 4(30 1/4) - 220 + 99
y = 121 - 220 + 99
y = -99 + 99
y = 0
(x, y) = (5 1/2, 0)
or
y = 4x² - 40x + 99
y = 4(4 1/2)² - 40(4 1/2) + 99
y = 4(20 1/4) - 180 + 99
y = 81 - 180 + 99
y = -99 + 99
y = 0
(x, y) = (4 1/2, 0)
<u>y-intercept</u>
y = 4x² - 40x + 99
y = 4(0)² - 40(0) + 99
y = 4(0) - 0 + 99
y = 0 - 0 + 99
y = 0 + 99
y = 99
(x, y) = (0, 99)
--------------------------------------------------------------------------------------------
<u>vertex</u>
y = (x - 1)² = 2
y = (x - 1)² - 2
y = ((x - 1)(x - 1)) - 2
y = (x² - x - x + 1) - 2
y = x² - 2x + 1 - 2
y = x² - 2x - 1
x² - 2x - 1 = 0
x = <u>-(-2) +/- √((-2)² - 4(1)(-1))</u>
2(1)
x = <u>2 +/- √(4 + 4)</u>
2
x = <u>2 +/- √(8)</u>
2
x = <u>2 +/- 2.83</u>
2
x = 1 +/- 1.415
x = 1 + 1.415 x = 1 - 1.415
x = 2.415 x = 0.415
y = x² - 2x - 1
y = (2.145)² - 2(2.145) - 1
y = 4.60125 - 4.029 - 1
y = 0.57225 - 1
y = 0.42775
(x, y) = (2.415, 0.42775)
or
y = x² - 2x - 1
y = (0.415)² - 2(0.415) - 1
y = 0.172225 - 0.83 - 1
y = -0.657775 - 1
y = -1.657775
(x, y) = (0.415, -1.657775)
<u>y-intercept</u>
y = x² - 2x - 1
y = (0)² - 2(0) - 1
y = 0 - 0 - 1
y = 0 - 1
y = -1
(x, y) = (0, -1)
The total inventory is 200 + 300 + 400 + 100 = 1000. If 300 units remained, the we calculate the cost of the 700 sold via LIFO. These 700 units include the 100 units at $12.00, the 400 units at $11.00, and 200 units at $10.00 (out of the 300 purchased). This is a total cost of 100*12 + 400*11 + 200*10 = 1200 + 4400 + 2000 = $7600.