When solving an equation with an absolute value term, you make two separate equations ans solve for x:
Equation 1: |4x-3|-5 = 4
1st add 5 to both sides:
|4x-3| = 9
Remove the absolute value term and make two equations:
4x-3 = 9 and 4x - 3 = -9
Solving for x you get X = 3 and x = -1.5
When you replace x with those values in the original equation the statement is true so those are two solutions.
Do the same thing for equation 2:
|2x+3| +8 = 3
Subtract 8 from both sides:
|2x+3| = -5
Remove the absolute value term and make two equations:
2x +3 = -5
2x+3 = 5
Solving for x you get -1 and 4, but when you replace x in the original equation with those values, the statement is false, so there are no solutions.
The answer is:
C. The solutions to equation 1 are x = 3, −1.5, and equation 2 has no solution.
If you think about it, the question is asking us to find the greatest common factor, or GCF, of the two numbers, 24 and 18.
First, find all of the factors of 24.
The factors are: 1, 2, 3, 4, 6, 8, 12, 24
Next, find the factors of 18.
The factors are: 1, 2, 3, 6, 9, 18
List out all of the factors that both of the numbers have.
The factors are: 1, 2, 3, 6
Whichever is the greatest of these numbers is the GCF.
The GCF is 6, so the greatest number of groups he can make and still be able to win is 6.
Hope this helps!
Answer:
A
Step-by-step explanation:
Answer:
13
Step-by-step explanation:
3h - j
3(8) - 11
24 - 11
13