So u just do 27*0.45 to get 12.15 and subtract that to get 14.85
A is the correct answer
good luck
There is a possibility of 24 combinations I believe
Part A
<h3>Answer:
h^2 + 4h</h3>
-------------------
Explanation:
We multiply the length and height to get the area
area = (length)*(height)
area = (h+4)*(h)
area = h(h+4)
area = h^2 + 4h .... apply the distributive property
The units for the area are in square inches.
===========================================================
Part B
<h3>Answer:
h^2 + 16h + 60</h3>
-------------------
Explanation:
If we add a 3 inch frame along the border, then we're adding two copies of 3 inches along the bottom side. The h+4 along the bottom updates to h+4+3+3 = h+10 along the bottom.
Similarly, along the vertical side we'd have the h go to h+3+3 = h+6
The old rectangle that was h by h+4 is now h+6 by h+10
Multiply these expressions to find the area
area = length*width
area = (h+6)(h+10)
area = x(h+10) ..... replace h+6 with x
area = xh + 10x .... distribute
area = h( x ) + 10( x )
area = h( h+6 ) + 10( h+6 ) .... plug in x = h+6
area = h^2+6h + 10h+60 .... distribute again twice more
area = h^2 + 16h + 60
You can also use the box method or the FOIL rule as alternative routes to find the area.
The units for the area are in square inches.
Given the compound statement <span>(p∨q)∧r
where: p: 5 < -3
q : All vertical angles are congruent.
r: 4x = 36, then x = 9.
Recall the in logic, '</span>∨' symbolises "or" while '∧' symbolises "and".
Therefore, the compound statement <span>(p∨q)∧r can be written as follows:
Either 5 < -3 or all vertical angles are congruent, and if 4x = 36, then x = 9.
</span>