In the broadest sense of the term, we have modified the genes of almost everything. We used selective breeding to breed the most resistant form of crops, the largest sized chickens, and others. In recent years we have even modified them through gene splicing and other methods. Nearly everything we eat, including including "organic" foods have been changed from their original DNA structure, in fact we do not even know anything's original genetic structure because of this. Genetic modification could also include mutations. Some crops have mutated due to pollution, disease, or other effects such as climate change. Without genetic modification our world would differ from what it looks like today.
The "scissors" of the molecular biology are: DNA Restriction enzymes.
A restriction enzyme is a protein capable of cleaving a DNA fragment at a characteristic nucleotide sequence called a restriction site. Each restriction enzyme thus recognizes a specific site. Several hundred restriction enzymes are currently known.
Naturally present in a large number of species of bacteria, these enzymes have become important tools in genetic engineering.
The "glue" of the molecular biology are: DNA ligase
In molecular biology, DNA ligases are ligase-class enzymes that catalyze the formation of a phosphodiester bond between two segments of DNA. DNA ligases are involved in several essential cellular processes of DNA metabolism: in DNA replication, suture of Okazaki fragments, and in DNA repair and homologous recombination.
The use of these tools in molecular biology: Cloning
Molecular cloning is one of the bases of genetic engineering. It consists of inserting a DNA fragment (called insert) in an appropriate vector such as a plasmid for example. The new plasmid thus created will then be introduced into a host cell, generally the Escherichia coli bacterium. This will then be selected and multiplied to obtain a large amount of the plasmid of interest. Cloning a gene involves inserting it into a plasmid. A clone will be the bacterial transformant that contains this particular plasmid. In this case we speak of clone because all the individuals of the bacterial colony are genetically identical. Molecular cloning is thus different from reproductive cloning (creating an individual genetically identical to another but of a different age) or therapeutic cloning (making tissues from stem cells to perform transplants compatible with the recipient).
Molecular cloning requires restriction enzymes capable of cleaving the DNA, and DNA ligase capable of re-gluing the DNA fragments. Ligase was isolated for the first time from T4 bacteriophage. This enzyme is involved in the repair and replication of DNA. It can bind DNA fragments with compatible sticky ends. At higher concentration, this enzyme is also able to bind two ends of DNA as shown here. T4 DNA ligase works using ATP and Mg ++. It has an activity optimum of 16 ° C, but remains active at room temperature.
Answer:
Homeostasis
Explanation:
Homeostasis is an organism ability to maintain equilibrium [which means balancing opposing forces]. When we sweat our body it is trying to stop overheating.
Although amino acids may have other formulas, those in protein invariably have the general formula RCH(NH2)COOH, where C is carbon, H is hydrogen, N is nitrogen, O is oxygen, and R is a group, varying in composition and structure, called a side chain.
Because most waste produced in the cell is toxic when it accumulates.
Hope this helps!