Answer:
d. The interval contains only negative numbers. We cannot say at the required confidence level that one region is more interesting than the other.
Step-by-step explanation:
Hello!
You have the data of the chemical measurements in two independent regions. The chemical concentration in both regions has a Gaussian distribution.
Be X₁: Chemical measurement in region 1 (ppm)
Sample 1
n= 12
981 726 686 496 657 627 815 504 950 605 570 520
μ₁= 678
σ₁= 164
Sample mean X[bar]₁= 678.08
X₂: Chemical measurement in region 2 (ppm)
Sample 2
n₂= 16
1024 830 526 502 539 373 888 685 868 1093 1132 792 1081 722 1092 844
μ₂= 812
σ₂= 239
Sample mean X[bar]₂= 811.94
Using the information of both samples you have to determina a 90% CI for μ₁ - μ₂.
Since both populations are normal and the population variances are known, you can use a pooled standard normal to estimate the difference between the two population means.
[(X[bar]₁-X[bar]₂)±
*
]

[(678.08-811.94)±1.648*
]
[-259.49;-8.23]ppm
Both bonds of the interval are negative, this means that with a 90% confidence level the difference between the population means of the chemical measurements of region 1 and region 2 may be included in the calculated interval.
You cannot be sure without doing a hypothesis test but it may seem that the chemical measurements in region 1 are lower than the chemical measurements in region 2.
I hope it helps!
There are 14 girls in class five.
<h3>How many of the students are girls?</h3>
28 students were present in class five, such that 18 of them were boys.
The number of girls on Sunday is given by the difference:
28 - 18 = 10
And we know that 4 girls did not go to school on that day, so the total number of girls on class five is:
10 + 4 = 14
If you want to learn more about math operations:
brainly.com/question/25421984
#SPJ1
I think 6x3=18
So, the answer is 18
For twelve people you need: 2 litres of lemon-lime soda, 1 pint of sherbet and 3 cups of ice tea.
For 36 people you need: 6 litres of lemon-lime soda, 3 pints of sherbet and 9 cups of ice.