Answer:
311.6 cm
Step-by-step explanation:
To solve this problem, let's call:
k = Keith's height
n = nephew's height
Since the ratio is 15:7, we have
(1)
Then, Keith's height is increased by 16%, so the new height of Keith is
(2)
While the nephew's height is doubled:
(3)
We also know that Keith is now 34 cm taller than his nephew, so
(4)
Substituting (2) and (3) into (4), we get

And substituting (1),

Solving for n,

So the current height of the nephew is:

While Keith's current height is

So their total current height is

Answer:
Mean of a grouped data is
Sum of F x/ sum of frequency F
Sum of F = 5 + 15 + 13 + 10 + 7 = 50
to find x find the average of the two classes
That's
0 + 10/2 = 10/2 = 5
10+20/2 = 15
20 + 30 / 2 = 25
30+40 /2 = 35
40+ 50 / 2 = 45
Therefore sum of Fx = 5(5) + 15(15) + 13(25) + 10(35) + 7(45)
= 1240
Therefore
Mean = 1240/50
= 24.8cm
I hope this helps you
Answer:
.
Step-by-step explanation:
Answer: 2 hr.
Explanation: Think back to rate of change. <em>d</em> = <em>rt</em>, <em>r</em> = <em>d/t</em>, <em>t</em> = <em>d/r</em>. In this case, we will be using <em>d</em> = <em>rt</em>. Mph would be <em>r</em>, rate, so you would categorize 15 mph and 8 mph under rate. <em>t</em> should represent the time each cyclist traveled. Tracey's and Emma's distance, <em>d</em>, would be the same as their mph, hence Tracey's being 15<em>t</em> and Emma's would be 8<em>t</em>. When you add Tracey's distance plus Emma's distance, you end up with 46 mi. Now, you need to combine like terms, which should look like 15<em>t</em> + 8<em>t </em> = 46. Add 15 and 8 to get 23, so it should be 23<em>t</em> = 46 now. Then, divide both sides of the equation by 23 and now you should have your answer, <em>t</em> = 2 hr.
The area of the patio A(w), can be represented by the function that will be A(w) = w² + 7w.
<h3>What is the area of the rectangle?</h3>
Let L be the length and W be the width of the rectangle.
Then the area of the rectangle will be
Area of the rectangle = L×W square units
The length of a rectangular patio is 7 feet more than its width (w).
The area of the patio A(w),can be represented by the function
Length (L) = w + 7
Then the area will be
A(w) = (w + 7)w
A(w) = w² + 7w
More about the area of the rectangle link is given below.
brainly.com/question/20693059
#SPJ1