Answer:
The statement, (1- <em>α</em>)% confidence interval for (μ₁ - μ₂) does not contain zero is TRUE.
Step-by-step explanation:
The hypothesis for a test is defined as follows:
<em>H</em>₀: μ₁ = μ₂ vs. <em>H</em>ₐ: μ₁ ≠ μ₂
It is provided that the test was rejected st the significance level <em>α</em>%.
If a decision is to made using the confidence interval the conditions are:
If the null hypothesis value is not included in the (1 - <em>α</em>)% confidence interval then the null hypothesis will be rejected and vice versa.
In this case the null hypothesis value is:
<em>H</em>₀: μ₁ - μ₂ = 0.
If the value 0 is not included in the (1 - <em>α</em>)% confidence interval for the difference between two means, then the null hypothesis will be rejected.
Thus the statement, (1- <em>α</em>)% confidence interval for (μ1- μ2) does not contain zero is TRUE.
Answer:
9,000
Step-by-step explanation:
Add up the fractional amounts and divide them by however many amounts there are..........
eg.
Step 1:Add the fractions
1/6 + 5/8 +3/4
(find the LCD)
1/6 + 5/8 + 3/4 = 4/24 + 15/24 + 18/24 = 37/24
Step 2: Divide the sum by the number of numbers in the set
37/24 ÷ 3= 37/24 ÷ 3/1= 37/24 X 1/3= 37/72
<span>So the mean (average) is 37/72</span>
21) 473 1/5
22) 1/3
23) 4 1/4
Answer:
First, you must find the midpoint of the segment, the formula for which is
(
x
1
+
x
2
2
,
y
1
+
y
2
2
)
. This gives
(
−
5
,
3
)
as the midpoint. This is the point at which the segment will be bisected.
Next, since we are finding a perpendicular bisector, we must determine what slope is perpendicular to that of the existing segment. To determine the segment's slope, we use the slope formula
y
2
−
y
1
x
2
−
x
1
, which gives us a slope of
5
.
Perpendicular lines have opposite and reciprocal slopes. The opposite reciprocal of
5
is
−
1
5
.
We now know that the perpendicular travels through the point
(
−
5
,
3
)
and has a slope of
−
1
5
.
Solve for the unknown
b
in
y
=
m
x
+
b
.
3
=
−
1
5
(
−
5
)
+
b
⇒
3
=
1
+
b
⇒
2
=
b
Therefore, the equation of the perpendicular bisector is
y
=
−
1
5
x
+
2
.
Related questions
What is the midpoint of the line segment joining the points (7, 4) and (-8, 7)?
How would you set up the midpoint formula if only the midpoint and one
Step-by-step explanation: