Recall that
sin(<em>a</em> + <em>b</em>) = sin(<em>a</em>) cos(<em>b</em>) + cos(<em>a</em>) sin(<em>b</em>)
sin(<em>a</em> - <em>b</em>) = sin(<em>a</em>) cos(<em>b</em>) - cos(<em>a</em>) sin(<em>b</em>)
Adding these together gives
sin(<em>a</em> + <em>b</em>) + sin(<em>a</em> - <em>b</em>) = 2 sin(<em>a</em>) cos(<em>b</em>)
To get 14 cos(39<em>x</em>) sin(19<em>x</em>) on the right side, multiply both sides by 7 and replace <em>a</em> = 19<em>x</em> and <em>b</em> = 39<em>x</em> :
7 (sin(19<em>x</em> + 39<em>x</em>) + sin(19<em>x</em> - 39<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
7 (sin(58<em>x</em>) + sin(-20<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
7 (sin(58<em>x</em>) - sin(20<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
Answer:
80444444444444444448----2-19999999999999999999999999999999999999488888888888888888888888865194974037205702795042-73--457-309703407203570-2-5-593759597207092-7503928077475073703594370975909304575407590565-17596332-659549579-27943595396575-2759650-2650-2959-92552820595907979474237947479023333333372222227403794322225409732222224700007945479470000374444444440944453709433337094444444444444474555555709479000447950497439270007454709490375777772093749930579047093479352974300000040357999994794432099999994907777743799949034970349743972437900000000940733320944444755555554099970304937777449037709437453094490377974374903
Step-by-step explanation:
A. 3/2
b.0.5
c.you have to add them
Answer:
I found two different solutions. Hope one of them help!
1. x = -1/3 = -0.333
2. x = 5/2 = 2.500
Step-by-step explanation:
13 ± √ 289
x = ——————
12
Can √ 289 be simplified ?
Yes! The prime factorization of 289 is
17•17
To be able to remove something from under the radical, there have to be 2 instances of it (because we are taking a square i.e. second root).
√ 289 = √ 17•17 =
± 17 • √ 1 =
± 17
So now we are looking at:
x = ( 13 ± 17) / 12
Two real solutions:
x =(13+√289)/12=(13+17)/12= 2.500
or
x =(13-√289)/12=(13-17)/12= -0.333
Two solutions were found :
x = -1/3 = -0.333
x = 5/2 = 2.500