if the diameter is 20, the its radius must be half that or 10.
![\textit{area of a sector of a circle}\\\\ A=\cfrac{\theta \pi r^2}{360}~~ \begin{cases} r=radius\\ \theta =\stackrel{degrees}{angle}\\[-0.5em] \hrulefill\\ A=5\pi \\ r=10 \end{cases}\implies \begin{array}{llll} 5\pi =\cfrac{\theta \pi (10)^2}{360}\implies 5\pi =\cfrac{5\pi \theta }{18} \\\\\\ \cfrac{5\pi }{5\pi }=\cfrac{\theta }{18}\implies 1=\cfrac{\theta }{18}\implies 18=\theta \end{array}](https://tex.z-dn.net/?f=%5Ctextit%7Barea%20of%20a%20sector%20of%20a%20circle%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7B%5Ctheta%20%5Cpi%20r%5E2%7D%7B360%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20%5Ctheta%20%3D%5Cstackrel%7Bdegrees%7D%7Bangle%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20A%3D5%5Cpi%20%5C%5C%20r%3D10%20%5Cend%7Bcases%7D%5Cimplies%20%5Cbegin%7Barray%7D%7Bllll%7D%205%5Cpi%20%3D%5Ccfrac%7B%5Ctheta%20%5Cpi%20%2810%29%5E2%7D%7B360%7D%5Cimplies%205%5Cpi%20%3D%5Ccfrac%7B5%5Cpi%20%5Ctheta%20%7D%7B18%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B5%5Cpi%20%7D%7B5%5Cpi%20%7D%3D%5Ccfrac%7B%5Ctheta%20%7D%7B18%7D%5Cimplies%201%3D%5Ccfrac%7B%5Ctheta%20%7D%7B18%7D%5Cimplies%2018%3D%5Ctheta%20%5Cend%7Barray%7D)
They are equal because if you divide 4÷1.0 your answer would be 0.4
<span>gravitational potential energy : P
Gravity : g
Mass : m
height : h
P = mgh = 3 x 9.8 x 0.45 = 13.23 Joule
Potential energy is work , from the known formula
W = Fd ( work = force x distance )
W = P ( in case of potential energy height change)
F is the force acting on the body in case of ideal ramp , the only force acting is the weight of the body
F = mg ( not just <m> as the force is mg (Newton) gravity effect)
d is the displacement in direction of force, as we have considered the force to be the weight not it's component in direction of the ramp , the change in displacement is the change in height so
d = h
W = Fd = (F = mg) x (d = h) = mgh
W = mgh = P
</span>
The answer is 45 because you have to decide the number by what you just said
Answer: 1
Step-by-step explanation: