1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
satela [25.4K]
3 years ago
8

I need help figuring out the steps to do this question

Mathematics
1 answer:
krok68 [10]3 years ago
3 0

6x-18                                  14x+38

subtract the 6 from the 6 and the 14 which will give you:                 then add the 18 to the the 18 and the 38  

8x = 56

then divide 8/8 which is zero and 8/56 which equals 7  so ur answer is x=7

You might be interested in
Perimeter of a rectangle is 96m. if it's length is 3 times it's width , then find it's length and breadth.​
Stolb23 [73]

Answer:

breadth = 12

length = 36

Step-by-step explanation:

let the breadth be 'x'

length = 3x

p = 2l + 2b

96 = 2(3x) + 2(x)

x = 12

7 0
3 years ago
The choices are
Artemon [7]

Answer:

The answer is Perpendicular

7 0
3 years ago
85 : 45 = 170 : x<br><br> Answer to get the answer for x
Marina86 [1]

x=9/34 that's the answer

8 0
3 years ago
1) Determine the discriminant of the 2nd degree equation below:
Aleksandr-060686 [28]

\LARGE{ \boxed{ \mathbb{ \color{purple}{SOLUTION:}}}}

We have, Discriminant formula for finding roots:

\large{ \boxed{ \rm{x =  \frac{  - b \pm \:  \sqrt{ {b}^{2}  - 4ac} }{2a} }}}

Here,

  • x is the root of the equation.
  • a is the coefficient of x^2
  • b is the coefficient of x
  • c is the constant term

1) Given,

3x^2 - 2x - 1

Finding the discriminant,

➝ D = b^2 - 4ac

➝ D = (-2)^2 - 4 × 3 × (-1)

➝ D = 4 - (-12)

➝ D = 4 + 12

➝ D = 16

2) Solving by using Bhaskar formula,

❒ p(x) = x^2 + 5x + 6 = 0

\large{ \rm{ \longrightarrow \: x =  \dfrac{ - 5\pm  \sqrt{( - 5) {}^{2} - 4 \times 1 \times 6 }} {2 \times 1}}}

\large{ \rm{ \longrightarrow \: x =  \dfrac{ - 5  \pm  \sqrt{25 - 24} }{2 \times 1} }}

\large{ \rm{ \longrightarrow \: x =  \dfrac{ - 5 \pm 1}{2} }}

So here,

\large{\boxed{ \rm{ \longrightarrow \: x =  - 2 \: or  - 3}}}

❒ p(x) = x^2 + 2x + 1 = 0

\large{ \rm{ \longrightarrow \: x =  \dfrac{  - 2 \pm  \sqrt{ {2}^{2}  - 4 \times 1 \times 1} }{2 \times 1} }}

\large{ \rm{ \longrightarrow \: x =  \dfrac{ - 2 \pm \sqrt{4 - 4} }{2} }}

\large{ \rm{ \longrightarrow \: x =  \dfrac{ - 2 \pm 0}{2} }}

So here,

\large{\boxed{ \rm{ \longrightarrow \: x =  - 1 \: or \:  - 1}}}

❒ p(x) = x^2 - x - 20 = 0

\large{ \rm{ \longrightarrow \: x =  \dfrac{ - ( - 1) \pm  \sqrt{( - 1) {}^{2} - 4 \times 1 \times ( - 20) } }{2 \times 1} }}

\large{ \rm{ \longrightarrow \: x =  \dfrac{ 1 \pm \sqrt{1 + 80} }{2} }}

\large{ \rm{ \longrightarrow \: x =  \dfrac{1 \pm 9}{2} }}

So here,

\large{\boxed{ \rm{ \longrightarrow \: x = 5 \: or \:  - 4}}}

❒ p(x) = x^2 - 3x - 4 = 0

\large{ \rm{ \longrightarrow \: x =   \dfrac{  - ( - 3) \pm \sqrt{( - 3) {}^{2} - 4 \times 1 \times ( - 4) } }{2 \times 1} }}

\large{ \rm{ \longrightarrow \: x =  \dfrac{3 \pm \sqrt{9  + 16} }{2 \times 1} }}

\large{ \rm{ \longrightarrow \: x =  \dfrac{3  \pm 5}{2} }}

So here,

\large{\boxed{ \rm{ \longrightarrow \: x = 4 \: or \:  - 1}}}

<u>━━━━━━━━━━━━━━━━━━━━</u>

5 0
3 years ago
Read 2 more answers
How to solve this problem??
slega [8]
\frac{2}{3} =  \frac{18}{x+5}&#10;
multiply each side by x+5
\frac{2x+10}{3}=18
multiply each side by 3

8 0
3 years ago
Other questions:
  • X minus fourteen equals negative thirty-three
    10·2 answers
  • Can someone help me find the answer for M&gt;5
    15·2 answers
  • An art museum has 1,042 pictures to split equally into 45 different exhibits. How many more pictures does the museum need to mak
    8·2 answers
  • Lilly and Maggie decorated their windows with twinkle lights. Maggie used 51 more twinkle lights than Lilly. Fill in the box wit
    9·1 answer
  • What is the length of side PQ?
    8·1 answer
  • Factoring by grouping<br>1) x² + x² – 3x – 3 = 0​
    8·1 answer
  • The ratio of the heights of two similar solids is 6:11. Find the ratio of their surface areas.
    10·1 answer
  • Three consecutive odd integers are such that the square of the third integer is 9 less than the sum of the squares of the first
    13·1 answer
  • In the figure below, solve for the value of a. a = ______ in. (round to the nearest tenth and do NOT include units in your answe
    11·1 answer
  • What is 3.435 rounded to the nearest hundredth?<br> Submit
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!