1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
leonid [27]
3 years ago
8

Assume that when you stretch your torso vertically as much as you can, your center of mass is 1.0 m above the floor. The maximum

force you can exert on the floor in pushing off is 2.3 times the gravitational force Earth exerts on you
How low do you have to crouch in order to jump straight up and have your center of mass be 2.0 m above the floor? Determine the lowest height of your center of mass above the floor in the jump.?

Is this crouch practical?
Physics
1 answer:
Elenna [48]3 years ago
3 0

1) 0.77 m

2) 0.23 m

Explanation:

1)

Here we want to find the time elapsed for crouching in order to jump and reach a height of 2.0 m above the floor, starting from 1.0 m above the floor.

First of all, we start by calculating the speed required to jump up to a height of 2.0 m. Since the total energy is conserved, the initial kinetic energy is converted into gravitational potential energy, so:

\frac{1}{2}mv^2 = mgh

where

m is the mass of the man

v is the speed after jumping

g=9.8 m/s^2 is the acceleration due to gravity

h = 2.0 - 1.0 = 1.0 m is the change in height

Solving for v,

v=\sqrt{2gh}=\sqrt{2(9.8)(1.0)}=4.43 m/s

In the acceleration phase, we know that the initial velocity is

u=0

And the force exerted on the floor is 2.3 times the gravitational force, so

F=2.3 mg

This means the net force on you is

F_{net} = F-mg=2.3mg-mg=1.3 mg

because we have to consider the force of gravity acting downward.

So the acceleration of the man is

a=\frac{F_{net}}{m}=\frac{1.3mg}{m}=1.3g

Now we can use the  following suvat equation to find the displacement in the acceleration phase, which is how low the man has to crouch in order to jump:

v^2-u^2=2as

where s is the quantity we want to find. Solving for s,

s=\frac{v^2-u^2}{2a}=\frac{4.43^2-0}{2(1.3g)}=0.77 m

2)

At the beginning, we are told that the height of the center of mass above the floor is

h = 1.0 m

During the acceleration phase and the crouch, the height of the center of mass of the body decreases by

\Delta h = -0.77 m

This means that the lowest point reached by the center of mass above the floor during the crouch is

h'=h+\Delta h = 1.0 - 0.77 = 0.23 m

This value seems unpractical, since it is not really easy to crouch until having the center of mass 0.23 m above the ground.

You might be interested in
NO LINKS PLEASE. brainly to the best answer.
Sauron [17]

Answer:

Kinetic energy is energy possessed by a body by virtue of its movement. Potential energy is the energy possessed by a body by virtue of its position or state. While kinetic energy of an object is relative to the state of other objects in its environment, potential energy is completely independent of its environment.

Both energies are related to motion.

Explanation:

4 0
3 years ago
A car travels 48 km in 1.2 hours. What is the average speed of the car in km/hr
Alborosie

Answer:

average speed of car is 40 km/h

Explanation:

if car goes 48 km per 1.2 hours , the car goes 40 km per hour. so average speed of car is 40km/h

5 0
2 years ago
Which of the following statements best describe destructive forces? A. Forces that build up, create, landmasses. B. Forces that
MissTica
<span>An event that breaks objects into smaller objects or pieces is called destructive force 
</span><span>Tornadoes, Hurricanes, Earthquakes, Volcanoes, Tsunamis and more are some of examples
</span><span>Forces that wear down, destroy is right answer</span>
4 0
3 years ago
A stone is dropped into a river from a bridge at a height h above the water. Another stone is thrown vertically down at a time t
Mumz [18]

Answer:

v_{y_0} = \frac{\frac{g}{2}t(t - 2\sqrt{\frac{2h}{g}})}{\sqrt{\frac{2h}{g}} - t}

Explanation:

We will apply the equations of kinematics to both stones separately.

First stone:

Let us denote the time spent after the second stone is thrown as 'T'.

y - y_0 = v_{y_0}(t+T) + \frac{1}{2}a(t+T)^2\\0 - h = 0 + \frac{1}{2}(-g)(t+T)^2\\(t+T)^2 = \frac{2h}{g}\\T = \sqrt{\frac{2h}{g}}-t

Second stone:

y - y_0 = v_{y_0}T + \frac{1}{2}aT^2\\0 - h = v_{y_0}T -\frac{1}{2}gT^2\\-h = v_{y_0}(\sqrt{\frac{2h}{g}} - t) - \frac{g}{2}(\sqrt{\frac{2h}{g}} - t)^2\\-h = v_{y_0}(\sqrt{\frac{2h}{g}} - t) - \frac{g}{2}(\frac{2h}{g} + t^2 - 2t\sqrt{\frac{2h}{g}})\\-h = v_{y_0}\sqrt{\frac{2h}{g}} - v_{y_0}t - h -\frac{g}{2}t^2 + gt\sqrt{\frac{2h}{g}}\\v_{y_0}(\sqrt{\frac{2h}{g}} - t) = \frac{g}{2}t^2 - gt\sqrt{\frac{2h}{g}}\\v_{y_0} = \frac{\frac{g}{2}t(t - 2\sqrt{\frac{2h}{g}})}{\sqrt{\frac{2h}{g}} - t}

6 0
3 years ago
Read 2 more answers
An ac series circuit has an impedance of 60 Ohm and
Iteru [2.4K]

Answer:

Power factor of the AC series circuit is cos\phi=0.5

Explanation:

It is given that,

Impedance of the AC series circuit, Z = 60 ohms

Resistance of the AC series circuit, R = 30 ohms

We need to find the power factor of the circuit. It is given by :

cos\phi=\dfrac{R}{Z}

cos\phi=\dfrac{30}{60}

cos\phi=\dfrac{1}{2}

cos\phi=0.5

So, the power factor of the ac series circuit is cos\phi=0.5. Hence, this is the required solution.

6 0
2 years ago
Other questions:
  • 8 points
    12·2 answers
  • A boat moves through the water with two forces acting on it. One is a 2000 N forward push by the water on the propeller, and the
    13·1 answer
  • The nutritional calorie (Calorie) is equivalent to 1 kilocalorie. One pound of body fat is equivalent to about 4.10 × 103 Calori
    10·1 answer
  • What type(s) of atoms make up the element carbon?
    15·2 answers
  • Describe how the rider exerts a force on the motorcycle
    12·1 answer
  • The mass of a star can be determined by studying
    14·2 answers
  • Jonah finds a rusty nail outside. The nail is an example of _____.
    12·2 answers
  • Explain how heat is related to temperature and thermal energy...
    13·1 answer
  • Q3. You throw a ball into the air, it reaches a certain height and then comes back to you.
    7·1 answer
  • We know that an electric field contains energy. What causes the electric field itself?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!