It is highly helpful to know that the mechanical advantage (M.A.) of Class two levers is usually greater than one. It is because the overall length of the Effort Arm is higher than the overall length of Load Arm. It is easily known by MA is effort arm/load arm.
!! ⬇️
The mechanical advantage of a lever of the second order is always greater than one because its effort arm is always longer than the load arm i.e. Effort arm > Load arm.
Second class lever has mechanical advantage always more than one as load is in between fulcrum and effort making the effort arm longer than the load arm.
First Class Lever -- the effort and the load on either side of the fulcrum. Some examples would be a crowbar or a seesaw. The effort is only less than the load if the load is closer to the fulcrum. The lever then acts as a force magnifier and the mechanical advantage is greater than one.
Correct answer choice is :
C) Force
Explanation:
In physics, a force is any cooperation that, when unrestricted, will vary the motion of an object. A force can create an object with mass to alter its velocity to accelerate. Force can also be defined intuitively as a push or a pull. A force acting on an object may create the object to alter shape, to start moving, to stop moving, to stimulate or decelerate. When two objects communicate with each other they exert a force on each other, the forces are just in size but different in direction.
For this case, in the next item we have gravitational potential energy:
An apple in a tree.
Suppose we define our reference system at the floor level.
Suppose the apple is at a height h from the floor and has mass m.
The gravitational potential energy of the apple is given by:
U = mgh
Where,
m: apple mass
h: height of the apple with respect to the floor
g: acceleration due to gravity
Answer:
C) an apple on a tree
Answer:
The number of turns in the secondary coil is 48.
(B) is correct option.
Explanation:
Given that,
Number of turns on primary coil= 1000
Primary voltage = 2500 V
Secondary voltage = 120 v
We need to calculate the turns in the secondary coil
Using relation between voltage and number of turns in primary and secondary coil

Put the value into the formula



Hence, The number of turns in the secondary coil is 48.