24 / 30 x 100 = 80
answer: <span>Twenty-four is 30% of 80</span>
Answer:
The answer is indeed with Right angles
Answer:
On the 12th day
Step-by-step explanation:
12 is a multiple of both 4 and 6
Answer: x = (sqrt(7) + 2)/3 and
x = ( – sqrt(7) + 2)/3
Explanation:
3x^2 - 4x - 1 = 0
Divide both sides by 3:
3x^2/3 - 4/3x - 1/3 = 0/3
x^2 - 4/3x - 1/3 = 0
x^2 - 4/3x = 1/3
x^2 - 4/3x + (2/3)^2 = 1/3 + (2/3)^2
(x - 2/3)^2 = 1/3 + 4/9
(x - 2/3)^2 = 7/9
Sqrt both sides:
x - 2/3 = sqrt (7/9)
x - 2/3 = |sqrt(7)/3|
Set x -2/3 = sqrt(7)/3
=> x = (sqrt(7) + 2)/3
Set x - 2/3 = - sqrt(7)/3
=> x = ( - sqrt(7) + 2)/3
Answer:
<u>Triangle ABC and triangle MNO</u> are congruent. A <u>Rotation</u> is a single rigid transformation that maps the two congruent triangles.
Step-by-step explanation:
ΔABC has vertices at A(12, 8), B(4,8), and C(4, 14).
- length of AB = √[(12-4)² + (8-8)²] = 8
- length of AC = √[(12-4)² + (8-14)²] = 10
- length of CB = √[(4-4)² + (8-14)²] = 6
ΔMNO has vertices at M(4, 16), N(4,8), and O(-2,8).
- length of MN = √[(4-4)² + (16-8)²] = 8
- length of MO = √[(4+2)² + (16-8)²] = 10
- length of NO = √[(4+2)² + (8-8)²] = 6
Therefore:
and ΔABC ≅ ΔMNO by SSS postulate.
In the picture attached, both triangles are shown. It can be seen that counterclockwise rotation of ΔABC around vertex B would map ΔABC into the ΔMNO.