The seasons are caused by the tilt of the Earth's rotational axis. The answer is A
Answer:
The body will overheat
Explanation:
If the brain of an individual does not receive input that the body was starting to heat up on a hot day, <u>the setpoint temperature of the body would be exceeded and the body will overheat. If the condition persists for a while, the entire systems of the body may shut down due to overheating. </u>
Normal homeostatic response requires that the brain (the control center) receives a message from the skin (the sensor) about a rise in the body's temperature. In turn, the brain will set mechanisms that will bring the body's temperature back to normal in motion, including vasodilation of the blood vessels in the skin to allow more blood into the skin which in turn causes more heat loss to the surrounding.<em> Thus, an individual starts sweating and the evaporation of the sweat causes cooling and a return of the body to the setpoint temperature.</em>
Introduced to a habitat similar to their own introduced to a habitat different than their own outcompete native species generally have no native predators generally have native predators often have high reproductive rates often have low reproductive rates can tolerate a range of conditions
Answer:
The voltage-gated potassium channels associated with an action potential provide an example of what type of membrane transport?
A. Simple diffusion.
B.<u> Facilitated diffusion.
</u>
C. Coupled transport.
D. Active transport.
You are studying the entry of a small molecule into red blood cells. You determine the rate of movement across the membrane under a variety of conditions and make the following observations:
i. The molecules can move across the membrane in either direction.
ii. The molecules always move down their concentration gradient.
iii. No energy source is required for the molecules to move across the membrane.
iv. As the difference in concentration across the membrane increases, the rate of transport reaches a maximum.
The mechanism used to get this molecule across the membrane is most likely:
A. simple diffusion.
<u>B. facilitated diffusion.
</u>
C. active transport.
D. There is not enough information to determine a mechanism.
Carrier proteins - exist in two conformations, altered by high affinity binding of the transported molecule. Moves material in either direction, down concentration gradient (facilitated diffusion). EXAMPLE: GluT1 erythrocyte glucose transporter.
Channel proteins - primarily for ion transport. Form an aqueous pore through the lipid bilayer. May be gated. Moves material in either direction, down concentration gradient (facilitated diffusion). EXAMPLES: Voltage-gated sodium channel, erytrhocyte bicarbonate exchange protein.
This might be helpful... because I don't know anything about facilitated diffusion.
Answer:
Maybe 2,3 points
Explanation:
1. receive stimuli messages from inside and outside the body..
2. responding to stimuli by sending messages throughout the body.