Check the picture below.
bear in mind that, the "bases" are the two parallel sides, and the height is the distance between them.
![\bf \textit{area of this trapezoid}\\\\ A=\cfrac{AB(BC+AD)}{2}\\\\ -------------------------------\\\\ \textit{distance between 2 points}\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) A&({{ -1}}\quad ,&{{ 5}})\quad % (c,d B&({{ 3}}\quad ,&{{ 2}}) \end{array}\qquad % distance value d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2} \\\\\\ AB=\sqrt{[3-(-1)]^2+[2-5]^2}\implies AB=\sqrt{(3+1)^2+(2-5)^2} \\\\\\ AB=\sqrt{16+9}\implies AB=\sqrt{25}\implies \boxed{AB=5}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Barea%20of%20this%20trapezoid%7D%5C%5C%5C%5C%0AA%3D%5Ccfrac%7BAB%28BC%2BAD%29%7D%7B2%7D%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C%0A%5Ctextit%7Bdistance%20between%202%20points%7D%5C%5C%20%5Cquad%20%5C%5C%0A%5Cbegin%7Barray%7D%7Blllll%7D%0A%26x_1%26y_1%26x_2%26y_2%5C%5C%0A%25%20%20%28a%2Cb%29%0AA%26%28%7B%7B%20-1%7D%7D%5Cquad%20%2C%26%7B%7B%205%7D%7D%29%5Cquad%20%0A%25%20%20%28c%2Cd%0AB%26%28%7B%7B%203%7D%7D%5Cquad%20%2C%26%7B%7B%202%7D%7D%29%0A%5Cend%7Barray%7D%5Cqquad%20%0A%25%20%20distance%20value%0Ad%20%3D%20%5Csqrt%7B%28%7B%7B%20x_2%7D%7D-%7B%7B%20x_1%7D%7D%29%5E2%20%2B%20%28%7B%7B%20y_2%7D%7D-%7B%7B%20y_1%7D%7D%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0AAB%3D%5Csqrt%7B%5B3-%28-1%29%5D%5E2%2B%5B2-5%5D%5E2%7D%5Cimplies%20AB%3D%5Csqrt%7B%283%2B1%29%5E2%2B%282-5%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0AAB%3D%5Csqrt%7B16%2B9%7D%5Cimplies%20AB%3D%5Csqrt%7B25%7D%5Cimplies%20%5Cboxed%7BAB%3D5%7D)

![\bf -------------------------------\\\\ \textit{distance between 2 points}\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) A&({{ -1}}\quad ,&{{ 5}})\quad % (c,d D&({{ -13}}\quad ,&{{ -11}}) \end{array} \\\\\\ AD=\sqrt{[-13-(-1)]^2+[-11-5]^2} \\\\\\ AD=\sqrt{(-13+1)^2+(-16)^2}\implies AD=\sqrt{144+256} \\\\\\ AD=\sqrt{400}\implies \boxed{AD=\sqrt{20}}](https://tex.z-dn.net/?f=%5Cbf%20-------------------------------%5C%5C%5C%5C%0A%5Ctextit%7Bdistance%20between%202%20points%7D%5C%5C%20%5Cquad%20%5C%5C%0A%5Cbegin%7Barray%7D%7Blllll%7D%0A%26x_1%26y_1%26x_2%26y_2%5C%5C%0A%25%20%20%28a%2Cb%29%0AA%26%28%7B%7B%20-1%7D%7D%5Cquad%20%2C%26%7B%7B%205%7D%7D%29%5Cquad%20%0A%25%20%20%28c%2Cd%0AD%26%28%7B%7B%20-13%7D%7D%5Cquad%20%2C%26%7B%7B%20-11%7D%7D%29%0A%5Cend%7Barray%7D%0A%5C%5C%5C%5C%5C%5C%0AAD%3D%5Csqrt%7B%5B-13-%28-1%29%5D%5E2%2B%5B-11-5%5D%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0AAD%3D%5Csqrt%7B%28-13%2B1%29%5E2%2B%28-16%29%5E2%7D%5Cimplies%20AD%3D%5Csqrt%7B144%2B256%7D%0A%5C%5C%5C%5C%5C%5C%0AAD%3D%5Csqrt%7B400%7D%5Cimplies%20%5Cboxed%7BAD%3D%5Csqrt%7B20%7D%7D)
so, the area for this trapezoid is then
Answer:
In cubic millimeter 15 in us teaspoon 0.00304326
Step-by-step explanation:
Hope I helped?
The answer is 72°
the m112°-40°= 72°
Answer: 60 ft
Step-by-step explanation:
Given
The perimeter of the garden is 
The width of the garden is 
Suppose the length of the garden is 
Perimeter is the sum of the lengths of the sides

So, the length of the garden is
Answer:
The maximum error in the calculated area of rectangle is 5.4 cm².
Step-by-step explanation:
Given : The length and width of a rectangle are measured as 30 cm and 24 cm, respectively, with an error in measured of at most 0.1 cm in each.
To find : Use differentials to estimate the maximum error in the calculated area of rectangle ?
Solution :
The area of the rectangle is 
The derivative of the area is equal to the partial derivative of area w.r.t. length times the change in length plus the partial derivative of area w.r.t. width times the change in width.
i.e. 
Here, 
Substitute the values,



Therefore, the maximum error in the calculated area of rectangle is 5.4 cm².