1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elan Coil [88]
3 years ago
12

Find the range and interquality for 5,9,6'8'7

Mathematics
2 answers:
ehidna [41]3 years ago
8 0
I don't know the interquality but the range is 4
Genrish500 [490]3 years ago
8 0

Range: 9 - 5 = 4

5, 6, 7, 8, 9

Median: 7

Lower Quartile: 5.5

Upper Quartile: 8.5

(IQR) Interquartile Range: 8.5 - 5.5 = 3

You might be interested in
Is the following sentence a statement or not a statement? open the door. it is a statement. it is not a statement. cannot tell
erma4kov [3.2K]
It is a statement. I hope this helps  
4 0
2 years ago
Read 2 more answers
This is for my math review due tomorrow I need help!!
Snowcat [4.5K]
Z is greater than or equal to 7.

you would put a 7 near the front of the number line and put a colored in circle above it. then you would draw a line from the circle to the other end of the line
6 0
3 years ago
the area of a parallelogram shape land is on the square and length of its two adjacent sides are 25 m and 17 M find its diagonal
Alex787 [66]

Step-by-step explanation:

Draw diagonal AC

The triangle ABC has sides 17 and 25

Say AB is 17, BC is 25

Draw altitude on side BC from A , say h

h = 17 sin B

Area = 25*17 sin B = 408

sin B = 24/25

In ∆ ABC

Cos B = +- 7/25

= 625 + 289 — b^2 / 2*25*17

b^2 = 914 — 14*17 = 676

b = 26

h = 17*24/25 = 408/25 = 16.32

Draw the second diagonal BD

In ∆ BCD, draw altitude from D, say DE =h

BD^2 = h^2 + {(25 + sqrt (289 -h^2) }^2

BD^2 = 16.32^2 + (25 + 4.76)^2

= 885.6576 + 266.3424

BD = √ 1152 = 33.94 m

6 0
2 years ago
Qué procedimiento debe realizar para convertir kilómetros a mililitros
natulia [17]

Answer:

multiplica el valor de volumen por 1e+15

Step-by-step explanation:

4 0
3 years ago
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
Other questions:
  • Choose the correct formula to find the area of the oblique ABC shown below. Select all that apply. Select all true statements.
    8·1 answer
  • Plissss! I really need help​
    11·1 answer
  • Georgia needs to buy flea treatment for her dog. Pet Store 1 is offering the flea treatment for 40 percent off plus an additiona
    12·2 answers
  • Please answer this question for brainliest!
    12·1 answer
  • Write each number as a product of primes 1. 120 2. 160
    7·2 answers
  • Simplify fully<br> 4x – 8x²<br> 12x-6
    7·1 answer
  • 7) 4b2 + 8b + 7 = 4<br> What the answer
    9·2 answers
  • Can i get help please with this math question
    10·1 answer
  • Two towns are 324 miles apart. on a map, they are 4 1/2 apart. the scale of the map is 1
    15·1 answer
  • Help me please and thankyou
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!