<h3>
Answer: choice B) 36</h3>
=================================================
Explanation:
The vertical sides, when read from left to right, can be divided to get this fraction: 9/90
Following the same order and direction, we divide the slanting corresponding sides to get: b/360
The fractions we constructed are equal to one another, as the triangles are said to be proportional.
We have the fraction 9/90 = b/360
Lets cross multiply and solve for b
--------------------
9/90 = b/360
9*360 = 90*b
3240 = 90b
90b = 3240
90b/90 = 3240/90
<h3>b = 36</h3>
--------------------
A quick way to do this may be to notice how the jump from 9 to 90 is "times 10" so the jump from b to 360 is also "times 10". Think in reverse to divide 360 over 10 and we land on 36 as our answer. This line of thinking does not work as simple for all proportional problems.
Answer:
the answer is A=0.1 and B=0.85
Step-by-step explanation:
just took the test on edge
Answer:
C is your answer.
Step-by-step explanation:
Hope is right, you're welcome, and good luck on your work.
please don't forget to click in the ❤, and on the ⭐.
A)
To be similar triangles have to have equal angles
triangle ZDB'
1)angle Z=90 degrees
triangle B'CQ
1) angle C 90 degrees
angle A'B'Q=90
DB'Z+A'B'Q+CB'Q=180, straight angle
DB'Z+90+CB'Q=180
DB'Z+CB'Q=90
triangle ZDB'
DZB'+DB'Z=180-90=90
DB'Z+CB'Q=90
DZB'+DB'Z=90
DB'Z+CB'Q=DZB'+DB'Z
2)CB'Q=DZB' (these angles from two triangles ZDB' and B'CQ )
3)so,angles DB'Z and B'QC are going to be equal because of sum of three angles in triangles =180 degrees and 2 angles already equal.
so this triangles are similar by tree angles
b)
B'C:B'D=3:4
B'D:DZ=3:2
CQ-?
DC=AB=21
DC=B'C+B'D (3+4= 7 parts)
21/7=3
B'C=3*3=9
B'D=3*4=12
B'D:DZ=3:2
12:DZ=3:2
DZ=12*2/3=8
B'D:DZ=CQ:B'C
3:2=CQ:9
CQ=3*9/2=27/2
c)
BC=BQ+QC=B'Q+QC
BQ' can be found by pythagorean theorem
Answer:
2.2 metres squared
Step-by-step explanation:
We need to find the area of this trapezoid.
The area of a trapezoid is denoted by:
, where
and
are the parallel bases and h is the height
Here, we already know the lengths of the two bases; they are 0.9 metres and 2.3 metres. However, we need to find the length of the height.
Notice that one of the angles is marked 45 degrees. Let's draw a perpendicular line from top endpoint of the segment labelled 0.9 to the side labelled 2.3. We now have a 45-45-90 triangle with hypotenuse 2.0 metres. As one of such a triangle's properties, we can divide 2.0 by √2 to get the length of both legs:
2.0 ÷ √2 = √2 ≈ 1.414 ≈ 1.4
Thus, the height is h = 1.4 metres. Now plug all these values we know into the equation to find the area:


The answer is thus 2.2 metres squared.
<em>~ an aesthetics lover</em>