<h3>Answer:</h3>
Curium-247 <em>i.e.</em> ²⁴⁷₉₆Cm
<h3>Explanation:</h3>
Alpha decay is given by following general equation,
ᵃₓA → ⁴₂He + ᵃ⁻⁴ₓ₋₂B
Where;
A = Parent Isotope
B = Daughter Isotope
ᵃ = Mass Number
ₓ = Atomic Number
Californium-251 is the parent isotope in our case and it has 98 protons (atomic number) and is given as,
²⁵¹₉₈Cf
The alpha decay reaction of Californium-251 will be as,
²⁵¹₉₈Cf → ⁴₂He + ²⁴⁷₉₆B
The symbol for B with atomic number 96 was found to be the atom of Curium (Cm) by inspecting periodic table. Hence, the final equation is as follow,
²⁵¹₉₈Cf → ⁴₂He + ²⁴⁷₉₆Cm
CH3NH2 can only have as many hydrogen bonds as hydrogen bonding sites in the molecule. CH3NH2 has two N−H bonds and a lone pair of electrons on the nitrogen atom. Therefore, CH3NH2 can form three hydrogen bonds with water.
The same sample of gas at different temperatures shows that at low
temperatures, most molecules have speeds close to their average
speed.
<h3>
What does the Maxwell-Boltzmann distribution graph show?</h3>
Put simply, a Maxwell-Boltzmann distribution graph shows how the energy of gas particles varies within a system.
This is solely a measurement of the speeds of particles because kinetic energy is directly related to speed.
The Maxwell-Boltzmann distribution in chemistry is the subject of this article.
We will begin by describing how to read a graph of the Maxwell-Boltzmann distribution. This will involve taking a closer look at things like the typical energy and the most likely energy.
The graph will then be changed under various circumstances, such as when a catalyst is added or the temperature is raised.
The Maxwell-Boltzmann distribution, which we previously mentioned, is a probability function that depicts the distribution of energy among the particles of an ideal gas. (For more information on this topic, see Chemical Kinetics.)
To learn more about Maxwell distribution, refer
to brainly.com/question/24419453
#SPJ4
Answer:
17.5 g
Explanation:
Given data
- Mass of solution to be prepared: 50.0 grams
- Concentration of the salt solution: 35.0%
The concentration by mass of NaCl in the solution is 35.0%, that is, there are 35.0 grams of sodium chloride per 100 grams of solution. We will use this ratio to find the mass of sodium chloride required to prepare 50.0 grams of a 35.0% salt solution.

Answer:
Solids can hold their shape because their molecules are tightly packed together. ... Atoms and molecules in liquids and gases are bouncing and floating around, free to move where they want. The molecules in a solid are stuck in a specific structure or arrangement of atoms.
<em>Hope it helps...</em>