The shape of the H2O molecule is a Bent Triatomic.
It isn't symmetrical.
The H2O molecule is polar.
It will always have a greater mass
The water molecules are not completely removed so additional heating is required.
Explanation:
We have the copper (II) sulfate pentehydrate with the chemical formula CuSO₄ · 5H₂O.
molar mass of CuSO₄ · 5H₂O = 159.6 + 5 × 18 = 249.6 g/mole
Knowing this, we devise the following reasoning:
if in 249.6 g of CuSO₄ · 5H₂O there are 90 g of H₂O
then in 8 g of CuSO₄ · 5H₂O there are Y g of H₂O
Y = (8 × 90) / 249.6 = 2.88 g of water
mass of dried CuSO₄ = mass of CuSO₄ · 5H₂O - mass of H₂O
mass of dried CuSO₄ = 8 - 2.88 = 5.12 g
5.12 g is less that the weighted mass of 6.50 g. We deduce from this that the sample needs additional heating in order to remove all the water (H₂O) molecules.
Learn more about:
hydrates
brainly.com/question/10232217
brainly.com/question/13450632
#learnwithBrainly
Answer:
Kp is 0.228/atm
Explanation:
This is the reaction:
CO + Cl<u>₂</u> → CCl₂O
1 mol of carbon monoxide and 1 mol of chlorine produce 1 mol of phosgene.
Formula for Kp which derivates from Kc is:
Kp = Kc (R.T)ⁿᵇ ⁻ ⁿᵃ
Δп = nb (moles in the products) - nₐ(moles in the reactants)
Δп = 1 - 2 = -1
T is T° in K → T°C + 273 = 611°C +273 = 884K
R → Universal constant gas → 0.082 L.atm/mol.K
We replace the data: Kp = 16.5 L/mol (0.082 . 884K)⁻¹ → 0.228/atm
Ionic Bonding:
This type of bonding occurs when atoms want to fulfil their valence shells by taking/giving electrons to other atoms. This, leads to completed valence shells in most cases and ionisation of both elements. The opposite charges cause the elements to stick together because opposites attract.
Covalent Bonding:
This type of bonding occurs when electrons are shared between atoms to each fill up their own valence shells by sharing. The balance between the attraction forces and repulsion forces between the shared electrons is called covalent bonding.
Hope I helped :)