You're given that there's 152 students. Each student has 18 pencils. All you have to do is multiply 152 students x 18 pencils/student, to get 2,736 pencils.
<em>Please </em>use for reference. Merci.
To find rate of change simply divide y/x.
hour 2: 56/2=28
hour 4: 125/4~about 31.3 or 31
hour 5: 164/5=32.8 or ~ 33
hour 8: 271/8 ~ about 34 or 33.875
hour 13: 404/13 ~ about 31 or 31.0769231
What numbers are the largest?
hours 5 and 8
Thus, the correct answer was option C.
Answer:
<h3>C. They are both perfect squares and perfect cubes.</h3>
Step-by-step explanation:
Perfect squares are numbers that their square root can be found easily without any remainder.
Given the following patterns;
1*1 = 1 and 1*1*1 = 1
It can be seen that 1 is 1 perfect square since 1*1 = 1² = 1
Also 1 is perfect cube since 1*1*1 = 1³ = 1 (cube of the value gives 1)
Similarly for the expression;
8*8 = 64
8² = 64 (since the square of 8 gives 64, then 64 is known to be a perfect square)
Also 4*4*4 = 64
i.e 4³ = 64 (This shows that the cube root of 64 is 4 making it a perfect cube since we can get a whole number for the cube root of 64)
The same is applicable for other expressions 729 = 27 × 27, and 9 × 9 × 9, 4,096 = 64 × 64, and 16 × 16 × 16
This values are easily expressed as a constant multiple of a number showing that they are both perfect squares and perfect cubes.
Answer:
4 x 4 is 12
3 x 2 is 6
12 plus 6 is 18
Answer is 18
Step-by-step explanation:
Answer:
yes
Step-by-step explanation:
The line intersects each parabola in one point, so is tangent to both.
__
For the first parabola, the point of intersection is ...
y^2 = 4(-y-1)
y^2 +4y +4 = 0
(y+2)^2 = 0
y = -2 . . . . . . . . one solution only
x = -(-2)-1 = 1
The point of intersection is (1, -2).
__
For the second parabola, the equation is the same, but with x and y interchanged:
x^2 = 4(-x-1)
(x +2)^2 = 0
x = -2, y = 1 . . . . . one point of intersection only
___
If the line is not parallel to the axis of symmetry, it is tangent if there is only one point of intersection. Here the line x+y+1=0 is tangent to both y^2=4x and x^2=4y.
_____
Another way to consider this is to look at the two parabolas as mirror images of each other across the line y=x. The given line is perpendicular to that line of reflection, so if it is tangent to one parabola, it is tangent to both.