Answer:
Sample C is most likely the metal.
Explanation:
The Sample C is the metal, because the properties given in the sample c are all of the metal. As we know that the metals are the lustrous or the shiny elements. They are often good conductor of heat and also electricity. The metals possess high melting point. The density of the metals are heavy for their size. Metals can be easily hammered, and hence are malleable. They can easily be stretched into wires hence are ductile. They remains solid at room temperature but in case of mercury it remains as liquid. Metals are opaque object and cannot be see through it.
Wavelength of the light is 2.9 × 10⁻⁷ m.
<u>Explanation:</u>
Planck - Einstein equation shows the relationship between the energy of a photon and its frequency, and they are directly proportional to each other and it is given by the equation as E = hν,
where E is the energy of the photon
h is the Planck's constant = 6.626 × 10⁻³⁴ J s
ν is the frequency
From the above equation, we can find the frequency by rearranging the equation as,
ν =
= 
Now the frequency and the wavelength are in inverse relationship with each other.
ν × λ = c
It can be rearranged to get λ as,
λ = c / ν
= 
So wavelength is 2.9 × 10⁻⁷ m.
Explanation:
As the charge of all electrons are equal, the repulsive force exerted by each of them is also going to be equal. So, as K has more electrons repulsing its valence electron than Na, it has greater electron shielding.
Answer:
What is the reaction quotient, Q, for this system when [N2] = 2.00 M, [H2] = 2.00 M, and [NH3] = 1.00 M at 472°C?
A. 0.0625
How does Q compare to Keq?
B. Q < Keq
Explanation:
I remember this from a week ago. The answer was topex/poseidon