Answer:
what graph
Step-by-step explanation:
Geometric sequence general form: a * r^n
For Greg, we are given the elimination of the medicine as a geometric nth term equation:
200 * (0.88)^t
The amount of medicine starts at 200 mg and every hour, decreases by 12%;
To compare the decrease in medicine in the body between the two, it is useful to get them in a common form;
So, using the data provided for Henry, we will also attempt to find a geometric nth term equation that will work if we can:
As a geometric sequence, the first term would be a and the second term would be ar where r = multiplier;
If we divide the second term by the first term, we will therefore get r, which is 0.94 for Henry;
We can check that the data for Henry can be represented as a geometric sequence by using the multiplier (r) to see if we can generate the third value of the data;
We do this like so:
282 * (0.94)^2 = 249.18 (correct to 2 d.p)
We can tell that the data for Henry is also a geometric sequence.
So now, we just look at the multiplier for Henry and we find that every hour, the medicine decreases by 6%, half of the rate of decrease for Greg.
The answer is therefore that <span>Henry's body eliminated the antibiotic at half of the rate at which Greg's body eliminated the antibiotic.</span>
<span>2y = 4x + 8 ------> y = 2x + 4
4y = 4x + 20 ------> y = x+5
2x+4 =x+5
x = 1
y=x+5=1+5=6
Check:
</span>2*6 = 4*1 + 8 , 12 =12
4*6 = 4*1 + 20, 24 =24<span>
x=1,y=6
(1,6)
</span>
The nearest ten thousand is 20,000
Answer:
8x^2
Explanation:
First, do prime factorization of each of the coefficients:
32 ⇒ 2^5
24 ⇒ 2^3, 3
The greatest common factor (GCF) of the coefficients is 2^3 = 8.
Next, find the GCF of the variables:
x^2
x^2, y
The GCF of the variables is x^2.
Finally, multiply the GCF of the coefficients by the GCF of the variables to get:
8x^2