Answer:
4.8m
Step-by-step explanation:
All of the angles should be the same because a square has all equal angles and side lengths.
Answer:
a. The mean would be 0.067
The standard deviation would be 0.285
b. Would be of 1-e∧-375
c. The probability that both of them will be gone for more than 25 minutes is 1-e∧-187.5
d. The likelihood of at least of one of the taxis returning within 25 is 1-e∧-375
Step-by-step explanation:
a. According to the given data the mean and the standard deviation would be as follows:
mean=1/β=1/15=0.0666=0.067
standard deviation=√1/15=√0.067=0.285
b. To calculate How likely is it for a particular trip to take more than 25 minutes we would calculate the following:
p(x>25)=1-p(x≤25)
since f(x)=p(x≤x)=1-e∧-βx
p(x>25)=1-p(x≤25)=1-e∧-15x25=1-e∧-375
c. p(x>25/2)=1-p(x≤25/2)=1-e∧-15x25/2=1-e∧-187.5
d. p(x≥25)=1-e∧-15x25=1-e∧-375
The binomial (2 · x + y)⁷ in expanded form by 128 · x⁷ + 448 · x⁶ · y + 672 · x⁵ · y² + 560 · x⁴ · y³ + 280 · x³ · y⁴ + 84 · x² · y⁵ + 14 · x · y⁶ + y⁷.
<h3>How to expand the power of a binomial</h3>
Herein we have the seventh power of a binomial, whose expanded form can be found by using the binomial theorem and Pascal's triangle. Hence, we find the following expression for the expanded form:
(2 · x + y)⁷
(2 · x)⁷ + 7 · (2 · x)⁶ · y + 21 · (2 · x)⁵ · y² + 35 · (2 · x)⁴ · y³ + 35 · (2 · x)³ · y⁴ + 21 · (2 · x)² · y⁵ + 7 · (2 · x) · y⁶ + y⁷
128 · x⁷ + 448 · x⁶ · y + 672 · x⁵ · y² + 560 · x⁴ · y³ + 280 · x³ · y⁴ + 84 · x² · y⁵ + 14 · x · y⁶ + y⁷
Then, the binomial (2 · x + y)⁷ in expanded form by 128 · x⁷ + 448 · x⁶ · y + 672 · x⁵ · y² + 560 · x⁴ · y³ + 280 · x³ · y⁴ + 84 · x² · y⁵ + 14 · x · y⁶ + y⁷.
To learn more on binomials: brainly.com/question/12249986
#SPJ1