1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kogti [31]
4 years ago
14

Find the 4th term of the expansion A B C D

Mathematics
2 answers:
stiks02 [169]4 years ago
8 0

Answer:

Option A. =-112a^{5}\sqrt{2}

Step-by-step explanation:

from the given formula of binomial (a+b)^{n}=a^{n}+na^{n-1}b+\frac{n(n-1)}{2!}a^{n-2}b^{2}+\frac{n(n-1)(n-2)}{3!}a^{n-3}b^{3}.....b^{n} we can calculate any term of this expansion.

Now from the question we have to find out the 4th term of (a-\sqrt{2} )^{8}

From the expansion fourth term will be \frac{n(n-1)(n-2)}{3!}a^{n-3}b^{3}

Now we replace a=a, b=(-√2) and n=8

\frac{8(8-1)(8-2)}{3!}a^{8-3}(-\sqrt{(2)})^{3}

= -\frac{8\times 7\times 6}{3\times 2\times 1}a^{5}(2)\sqrt{2}=-8\times 7a^5(2)\sqrt{2}

=-112a^{5}\sqrt{2}


Marysya12 [62]4 years ago
5 0

Answer:

option-A

Step-by-step explanation:

We can use rth term binomial expansion formula

(x+y)^n

T_r=(n,r-1)x^{n-(r-1)}y^{r-1}

we are given

(a-\sqrt{2})^8

we can compare

x=a,y=-\sqrt{2}

n=8

r=4

now, we can find 4th term

T_r=(8,4-1)a^{8-(4-1)}(-\sqrt{2})^{4-1}

now, we can simplify it

T_4=\frac{8!}{5!3!}\times -2\sqrt{2}a^5

T_4=56\times -2\sqrt{2}a^5

T_4=-112\sqrt{2}a^5


You might be interested in
The length of the rectangle is 4cm less than its width . what are the dimensions of the rectangle if its area is 140
melomori [17]
Let the width of the rectangle be x
Then length =x-4
Area=x(x-4)=140
x²-4x=140
x²-4x-140=0
x²-14x+10x-140=0
x(x-14)+10(x-14)=0
(x-14)(x+10)=0
Therefore,length=14 cm and  width=10 cm

8 0
3 years ago
What is the answer please for 10 points
makvit [3.9K]

1.07 is the correct answer :)

6 0
3 years ago
Read 2 more answers
A scientist has discovered an organism that produces five offspring exactly one hour after its own birth, and then goes on to li
Nookie1986 [14]
I got 20,737 but I could be wrong so I will attach my algorithm and work.

8 0
4 years ago
Better Products, Inc., manufactures three products on two machines. In a typical week, 40 hours are available on each machine. T
Kaylis [27]

Answer:

z (max)  =  1250 $

x₁  = 25    x₂  =  0   x₃  =  25

Step-by-step explanation:

                                Profit $    mach. 1      mach. 2

Product 1     ( x₁ )       30             0.5              1

Product 2    ( x₂ )       50             2                  1

Product 3    ( x₃ )       20             0.75             0.5

Machinne 1 require  2 operators

Machine   2 require  1  operator

Amaximum of  100 hours of labor available

Then Objective Function:

z  =  30*x₁  +  50*x₂  +  20*x₃      to maximize

Constraints:

1.-Machine 1 hours available  40

In machine 1    L-H  we will need

0.5*x₁  +  2*x₂  + 0.75*x₃  ≤  40

2.-Machine 2   hours available  40

1*x₁  +  1*x₂   + 0.5*x₃   ≤  40

3.-Labor-hours available   100

Machine 1     2*( 0.5*x₁ +  2*x₂  +  0.75*x₃ )

Machine  2       x₁   +   x₂   +  0.5*x₃  

Total labor-hours   :  

2*x₁  +  5*x₂  +  2*x₃  ≤  100

4.- Production requirement:

x₁  ≤  0.5 *( x₁ +  x₂  +  x₃ )     or   0.5*x₁  -  0.5*x₂  -  0.5*x₃  ≤ 0

5.-Production requirement:

x₃  ≥  0,2 * ( x₁  +  x₂   +  x₃ )  or    -0.2*x₁  - 0.2*x₂ + 0.8*x₃   ≥  0

General constraints:

x₁  ≥   0       x₂    ≥   0       x₃     ≥   0           all integers

The model is:

z  =  30*x₁  +  50*x₂  +  20*x₃      to maximize

Subject to:

0.5*x₁  +  2*x₂  + 0.75*x₃  ≤  40

1*x₁  +  1*x₂   + 0.5*x₃       ≤  40

2*x₁  +  5*x₂  +  2*x₃        ≤  100

0.5*x₁  -  0.5*x₂  -  0.5*x₃  ≤ 0

-0.2*x₁  - 0.2*x₂ + 0.8*x₃   ≥  0

x₁  ≥   0       x₂    ≥   0       x₃     ≥   0           all integers

After 6 iterations with the help of the on-line solver AtomZmaths we find

z (max)  =  1250 $

x₁  = 25    x₂  =  0   x₃  =  25

6 0
3 years ago
If f(x)=7x-7 what is f(8)+f(4)
NARA [144]

<u>Given Function is</u>

  • f ( x ) = 7x - 7 ------- eqn ( 1 )

<u>Now , put the value of x = 8 in eqn ( 1 )</u>

  • f ( 8 ) = 7 ( 8 ) - 7
  • f ( 8 ) = 56 - 7
  • f ( 8 ) = 49 ------- eqn ( 2 )

<u>Now , put the value of x = 4 in eqn ( 1 )</u>

  • f ( 4 ) = 7 ( 4 ) - 7
  • f ( 4 ) = 28 - 7
  • f ( 4 ) = 21 ------- eqn ( 3 )
<h3 />

<u>From eqn ( 2 ) nd eqn ( 3 ) we get,</u>

  • f ( 8 ) + f ( 4 )
  • 49 + 21
  • 70

Hope Helps! :)

7 0
3 years ago
Other questions:
  • In triangle ABCD, m <br> What is m
    14·1 answer
  • Which products result in a difference of squares? Check all that apply.
    5·1 answer
  • What is the value of x? Triangle with angles labeled as 47 degrees, 71 degrees, and x. 62° 56° 134° 46°
    9·2 answers
  • A local reading club has a set of 12 hardback books, a set of 8 paperback, And a set of 36 magazines each set can be divided amo
    5·2 answers
  • When a student so than Xbox on eBay for $157, she was charged a two-part final value fee: 5.05% of the first $35 of the selling
    12·1 answer
  • How do I simplify the expression
    15·1 answer
  • (3/2)^2÷(1-3/2+√(1/8+7/16))×(1+2/3)^3<br> ayudaaaaaaaa
    10·1 answer
  • If B = -m +1 - 9m2 and A = m + 9, find an expression that equals 2B – 2 A<br> in standard form.
    5·1 answer
  • [(-2)²×3]÷[(-9)-5+2]
    11·2 answers
  • (06.04 MC)
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!