Answer:

Since the measurement can't be negative the correct answer for this case would be 
Step-by-step explanation:
Let's assume that the figure attached illustrate the situation.
For this case the we know that the original area given by:

And we know that the initial area is a half of the entire area in red
, so then:

And we know that the area for a rectangular pieces is the length multiplied by the width so we have this:

We multiply both terms using algebra and the distributive property and we got:

And we can rewrite the expression like this:

And we can solve this using the quadratic formula given by:

Where
if we replace we got:

And the two possible solutions are then:

Since the measurement can't be negative the correct answer for this case would be 
Answer:
The answer is 91
Step-by-step explanation:
~Hoped this helped~
B. x^2 + 5x - 4 = 0
Anyway that you try to factor it will not work
~~hope this helps~~
Since B is perpendicular to A. We can say that the gradient of B will be -1/7 (product of the gradients of 2 perpendicular lines has to be -1).
Now we know that the equation for B is y=-(1/7)x + c with c being the y intercept.
Since the point isnt specified in the question, we could leave the equation like this.
But if there is a given point that B passes through, just plug in the x and y values into their respective places and solve to find c. That should give you the equation for b.
Now, to find the solution of x, we have 2 equations:
1) y=7x+12
2)y=-(1/7)x+c
In this simultaneous equation we see that y is equal to both the expressions. So,
7x+12=-(1/7)x+c
Now, since the value of c is not found, we cannot actually find the value of x, but if we would find c, we could also find x since it would only be a matter of rearranging the equation.
And there you go, that is your solution :)
Answer:
its 5
Step-by-step explanation: