<h2>π/4 radians = 45°</h2>
<h3>Further explanation</h3>
The basic formula that need to be recalled is:
Circular Area = π x R²
Circle Circumference = 2 x π x R
where:
<em>R = radius of circle</em>
The area of sector:
![\text{Area of Sector} = \frac{\text{Central Angle}}{2 \pi} \times \text{Area of Circle}](https://tex.z-dn.net/?f=%5Ctext%7BArea%20of%20Sector%7D%20%3D%20%5Cfrac%7B%5Ctext%7BCentral%20Angle%7D%7D%7B2%20%5Cpi%7D%20%5Ctimes%20%5Ctext%7BArea%20of%20Circle%7D)
The length of arc:
![\text{Length of Arc} = \frac{\text{Central Angle}}{2 \pi} \times \text{Circumference of Circle}](https://tex.z-dn.net/?f=%5Ctext%7BLength%20of%20Arc%7D%20%3D%20%5Cfrac%7B%5Ctext%7BCentral%20Angle%7D%7D%7B2%20%5Cpi%7D%20%5Ctimes%20%5Ctext%7BCircumference%20of%20Circle%7D)
Let us now tackle the problem!
This problem is about conversion unit of angles
<em>Remember that :</em>
![\large {\boxed {1 \pi ~ \text{radians} = 180^o} }](https://tex.z-dn.net/?f=%5Clarge%20%7B%5Cboxed%20%7B1%20%5Cpi%20~%20%5Ctext%7Bradians%7D%20%3D%20180%5Eo%7D%20%7D)
Another Example:
![\frac{\pi}{2} = \frac{1}{2} \times 180^o = \boxed {90^o}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cpi%7D%7B2%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%20180%5Eo%20%3D%20%5Cboxed%20%7B90%5Eo%7D)
![\frac{3\pi}{2} = \frac{3}{2} \times 180^o = \boxed {270^o}](https://tex.z-dn.net/?f=%5Cfrac%7B3%5Cpi%7D%7B2%7D%20%3D%20%5Cfrac%7B3%7D%7B2%7D%20%5Ctimes%20180%5Eo%20%3D%20%5Cboxed%20%7B270%5Eo%7D)
![\frac{3\pi}{4} = \frac{3}{4} \times 180^o = \boxed {135^o}](https://tex.z-dn.net/?f=%5Cfrac%7B3%5Cpi%7D%7B4%7D%20%3D%20%5Cfrac%7B3%7D%7B4%7D%20%5Ctimes%20180%5Eo%20%3D%20%5Cboxed%20%7B135%5Eo%7D)
![\frac{4\pi}{3} = \frac{4}{3} \times 180^o = \boxed {240^o}](https://tex.z-dn.net/?f=%5Cfrac%7B4%5Cpi%7D%7B3%7D%20%3D%20%5Cfrac%7B4%7D%7B3%7D%20%5Ctimes%20180%5Eo%20%3D%20%5Cboxed%20%7B240%5Eo%7D)
<h3>Learn more</h3>
<h3>Answer details</h3>
Grade: College
Subject: Mathematics
Chapter: Trigonometry
Keywords: Sine , Cosine , Tangent , Opposite , Adjacent , Hypotenuse, Circle , Arc , Sector , Area , Radian , Degree , Unit , Conversion