Answer: The required derivative is 
Step-by-step explanation:
Since we have given that
![y=\ln[x(2x+3)^2]](https://tex.z-dn.net/?f=y%3D%5Cln%5Bx%282x%2B3%29%5E2%5D)
Differentiating log function w.r.t. x, we get that
![\dfrac{dy}{dx}=\dfrac{1}{[x(2x+3)^2]}\times [x'(2x+3)^2+(2x+3)^2'x]\\\\\dfrac{dy}{dx}=\dfrac{1}{[x(2x+3)^2]}\times [(2x+3)^2+2x(2x+3)]\\\\\dfrac{dy}{dx}=\dfrac{4x^2+9+12x+4x^2+6x}{x(2x+3)^2}\\\\\dfrac{dy}{dx}=\dfrac{8x^2+18x+9}{x(2x+3)^2}](https://tex.z-dn.net/?f=%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B1%7D%7B%5Bx%282x%2B3%29%5E2%5D%7D%5Ctimes%20%5Bx%27%282x%2B3%29%5E2%2B%282x%2B3%29%5E2%27x%5D%5C%5C%5C%5C%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B1%7D%7B%5Bx%282x%2B3%29%5E2%5D%7D%5Ctimes%20%5B%282x%2B3%29%5E2%2B2x%282x%2B3%29%5D%5C%5C%5C%5C%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B4x%5E2%2B9%2B12x%2B4x%5E2%2B6x%7D%7Bx%282x%2B3%29%5E2%7D%5C%5C%5C%5C%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B8x%5E2%2B18x%2B9%7D%7Bx%282x%2B3%29%5E2%7D)
Hence, the required derivative is 
Answer:
The t-distribution is used.
Step-by-step explanation:
When we dont know the standard deviation of the population, we use the t-distribution(t-table).
Otherwise, the z-distribution(z-table) is used.
So the answer to this question is the t-distribution.
Answer:
The objective of the problem is obtained below:
From the information, an urn consists of, 4 black, 2 orange balls and 8 white.
The person loses $1 for each white ball selected, no money is lost or gained for any orange balls picked and win $2 for each black ball selected. Let the random variable X denotes the winnings.
No winnings probability= 0.011
Probability of winning $1=0.3516
Probability of winning $2= 0.0879
Probability of winning $4= 0.0659
Answer: cube root.
Cube root is the only one from the four functions given that has range from negative infinity to infinity.