1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dahasolnce [82]
3 years ago
14

Given the fu8nction f(x) = 2(x + 10), find x if f(x) = 24. A) 68 B) 7 C) 17 D) 2

Mathematics
1 answer:
lyudmila [28]3 years ago
6 0
F(x)=2(x+10)=24
2(x+10)=24
divide 2
x+10=12
minus 10
x=2
D
You might be interested in
What is the slope of the equation-3=-4(x-5)
scZoUnD [109]
You need to simplify it first. 
-3=-4(x-5)
Use distribution
-3=-4x+20
y=mx+b
m=slope
your slope is -4 :)
5 0
3 years ago
<img src="https://tex.z-dn.net/?f=%5Csf%20%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%5Ccfrac%7B%5Csqrt%7Bx-1%7D-2x%20%7D%7Bx-7%7D" id=
BARSIC [14]
<h3>Answer:  -2</h3>

======================================================

Work Shown:

\displaystyle L = \lim_{x\to\infty} \frac{ \sqrt{x-1}-2x }{ x-7 }\\\\\\\displaystyle L = \lim_{x\to\infty} \frac{ \frac{1}{x}\left(\sqrt{x-1}-2x\right) }{ \frac{1}{x}\left(x-7\right) }\\\\\\\displaystyle L = \lim_{x\to\infty} \frac{ \frac{1}{x}*\sqrt{x-1}-\frac{1}{x}*2x }{ \frac{1}{x}*x-\frac{1}{x}*7 }\\\\\\

\displaystyle L = \lim_{x\to\infty} \frac{ \sqrt{\frac{1}{x^2}}*\sqrt{x-1}-2 }{ 1-\frac{7}{x} }\\\\\\\displaystyle L = \lim_{x\to\infty} \frac{ \sqrt{\frac{1}{x^2}*(x-1)}-2 }{ 1-\frac{7}{x} }\\\\\\\displaystyle L = \lim_{x\to\infty} \frac{ \sqrt{\frac{1}{x}-\frac{1}{x^2}}-2 }{ 1-\frac{7}{x} }\\\\\\\displaystyle L = \frac{ \sqrt{0-0}-2 }{ 1-0 }\\\\\\\displaystyle L = \frac{-2}{1}\\\\\\\displaystyle L = -2\\\\\\

-------------------

Explanation:

In the second step, I multiplied top and bottom by 1/x. This divides every term by x. Doing this leaves us with various inner fractions that have the variable in the denominator. Those inner fractions approach 0 as x approaches infinity.

I'm using the rule that

\displaystyle \lim_{x\to\infty} \frac{1}{x^k} = 0\\\\\\

where k is some positive real number constant.

Using that rule will simplify the expression greatly to leave us with -2/1 or simply -2 as the answer.

In a sense, the leading terms of the numerator and denominator are -2x and x respectively. They are the largest terms for each, so to speak. As x gets larger, the influence that -2x and x have will greatly diminish the influence of the other terms.

This effectively means,

\displaystyle L = \lim_{x\to\infty} \frac{ \sqrt{x-1}-2x }{ x-7 } = \lim_{x\to\infty} \frac{ -2x }{ x} = -2\\\\\\

I recommend making a table of values to see what's going on. Or you can graph the given function to see that it slowly approaches y = -2. Keep in mind that it won't actually reach y = -2 itself.

5 0
3 years ago
Pls solve ASAP!! Review the attachment and solve. Pls hurry!
Virty [35]

Answer:

A. 3

Step-by-step explanation:

ΔDEC is bigger than ΔABC by 5. For the hypotenuse, 25 is 5 times bigger than 5.

So, side DE on ΔDEC has to be 5 times bigger than side AB on ΔABC.

If side AB equals 3, side DE equals 18 - 3, which is 15.

15 is five times bigger than 3, so the answer is A. 3.

Hope that helps.

6 0
3 years ago
Find x, to the nearest hundredth.​
Vitek1552 [10]

Answer:

Step-by-step explanation:

cos 44° = \frac{x}{14}

x = 14 × cos 44°

x ≈ 10.07 units

3 0
3 years ago
If a car drives around town what types of transformations does it undergo? What types can it not undergo,
Gekata [30.6K]
They need to perform distances
8 0
3 years ago
Other questions:
  • Complete the function table then write a rule for a function
    5·1 answer
  • Luis does chores at home to earn extra money. Each week he earns $20. He already has $320 in his savings account, and is trying
    9·1 answer
  • 1.Which explanation justifies how the area of a sector of a circle is derived?
    5·1 answer
  • 9x + 3y -2 what is the term(s) varible(s) coefficient(s) and constant(s)​
    7·1 answer
  • Suppose a circle with center (14, 9) passes through point (16, 12). Which equation represents the circle?
    6·1 answer
  • Find a sum equivalent to the product 6(y + x)
    10·2 answers
  • Its cost $3.55 to make a sandwich at the local deli shop to make a profit the deli sells it at a price that is 160% of the cost.
    9·2 answers
  • 50 points if you can help me??!!!!
    7·2 answers
  • How to measure volume using formulas?
    13·2 answers
  • F(x) = -2x + 4<br> g(x) = 2x^2 – 2x - 8<br> Find: (gof)(x)
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!