Answer:
<u>Answer</u><u> </u><u>→</u><u> </u><u>Student</u><u> </u><u>A</u><u> </u><u>was</u><u> </u><u>right</u><u>.</u>
![{ \tt{ \sqrt[3]{1944} = \sqrt[3]{(72 \times 27)} }} \\ \\ = { \tt{ \sqrt[3]{72} \times \sqrt[3]{27} }} \\ \\ = { \tt{ \sqrt[3]{72} \times 3}} \\ \\ = { \underline{ \tt{ \: 3 \sqrt[3]{72} } \: }}](https://tex.z-dn.net/?f=%7B%20%5Ctt%7B%20%5Csqrt%5B3%5D%7B1944%7D%20%20%3D%20%20%5Csqrt%5B3%5D%7B%2872%20%5Ctimes%2027%29%7D%20%7D%7D%20%5C%5C%20%20%5C%5C%20%20%3D%20%7B%20%5Ctt%7B%20%5Csqrt%5B3%5D%7B72%7D%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B27%7D%20%20%7D%7D%20%5C%5C%20%20%5C%5C%20%20%3D%20%7B%20%5Ctt%7B%20%5Csqrt%5B3%5D%7B72%7D%20%20%5Ctimes%203%7D%7D%20%5C%5C%20%20%5C%5C%20%20%3D%20%7B%20%5Cunderline%7B%20%5Ctt%7B%20%5C%3A%203%20%5Csqrt%5B3%5D%7B72%7D%20%7D%20%5C%3A%20%7D%7D)
Answer:
Verify x+y+z)=(x+y)+z for the following values of x,y,z
(i)x=3/4,y=5/6,z=-7/8(
ii)x=2/; 3,y=-5/6,z=-7/9(
iii)x=3/5,y=-6/9,z=2/10(
iv)x=; - 3/5, y = - 7/10, z = - 8/15 To Verify x+(y+z)=(x+y)+z (i)x=3/4,y=5/6,z=-7/8 LHS = 3/4 + (5/6 + (-7/8)) = (3/4) + (5/6 -7/8)= (3/4) + ((20-21)/24) = 3/4 - 1/24 =(18-1)/24 = 17/24
RHS = (3/4 + 5/6) + (-7/8)= (9 + 10)/12 - 7/8 = 19/12-7/8 = (38-21)/24 = 17/24
LHS = RHS = 17/24 (ii) * x = 2/3, y = - 5/6, z = - 7/9 LHS = 2/3 + (-5/6+ (-7/9) = 2/3 + (-5/6 - 7/9) = 2/3 + (-29/18) = 2/3 - 29/18
= 12/18 - 29/18 = -17/18
RHS = (2/3 + (-5/6))+(-7/9) = (2/3 - 5/6) - 7/9 = (-1/6) - 7/9 = -1/6 - 7/9 = -3/18 - 14/18 =
-17/18
LHS = RHS....
Hence verified..
Step-by-step explanation:
hope it helps u no notebook
.???
The answer is : B
-Hope this helps, even though you asked for no explanation.
Answer:
4
x
−
1
3
y
=
−
2
To convert this equation to slope-intercept form, solve for
y
.
Subtract
4
x
from both sides.
−
1
3
y
=
−
2
−
4
x
Simplify
−
1
3
y
to
−
y
3
−
y
3
=
−
2
−
4
x
Multiply both sides times
3
.
−
y
=
−
2
(
3
)
−
4
x
(
3
)
Simplify.
−
y
=
−
6
−
12
x
Rearrange the right side.
−
y
=
−
12
x
−
6
Multiply both sides times
−
1
.
y
=
12
x
+
6
m
=
12
and
b
=
6
.
Step-by-step explanation:
Answer:
The equation would be y = -1/3x + 4
Step-by-step explanation:
The first step to finding this equation needs to be solving the first equation for y so that we can find the slope.
-3x + y = 1
y = 3x + 1
Now that we have the slope of 3, we know the slope of a perpendicular line would be -1/3. This is because perpendicular lines have opposite and reciprocal slopes. We can then use this and the point to solve in point-slope form.
y - y1 = m(x - x1)
y - 2 = -1/3(x - 6)
y - 2 = -1/3x + 2
y = -1/3x + 4